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Abstract

This dissertation explores the formation of social structures on signed

graphs from the perspective of dynamical systems. We outline what it

means for a graph of relations to be balanced, motivated by concepts

in social psychology. We investigate and compare existing models of

opinion dynamics through gossiping mechanisms, and explore how they

affect the structure of social groups. Such dynamics tend to diverge,

hence we investigate known models that bound the opinions to a pre-

scribed range. We then present new convergence proofs and prove the

stability of different social states under such models.

We outline a novel control model, which nudges the opinions towards a

social configuration prescribed by a state vector, termed the diplomatic

target. We apply this model to two case studies: the alliances and

enmity of nations in the period preceding WWI; and Zachary’s karate

club study, a well-known example of group fission in network theory.

Our model correctly classifies the final allegiances in both cases. We

also introduce and investigate the bifurcating dynamics on two coupled

graphs, known as a multiplex graph, and prove the stability of various

fixed points of the associated system. We find that coupled graphs can

tend toward separate states of balance and still be stable under the

presented dynamics, interpreting this in the context of social networks.
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Chapter 1

Introduction

How might we model the dynamics of friendship and enmity? In this dissertation,

we investigate the social structures which emerge from continuous-time dynamic

models, and their associated stability, control, and application to more complex

graph topologies. The key concept underpinning such models is that of the signed

opinion graph, where signed edges quantify the strength of positive or negative re-

lations between vertices representing social entities, encoded in the associated en-

tries of a signed matrix X. The dynamics are represented as initial value problems

in X, which in their basic form consist of simple matrix operations representing a

gossiping mechanism, each vertex updating its opinion of another by considering

all of the relative opinions in the graph.

The relation between three simply connected entities, known as a triad, is

considered socially balanced if there is an odd number of positive opinions between

them. In a fully connected graph, a necessary and sufficient condition for the entire

graph to be socially balanced is if all of the constituent triads are balanced [1].

In such a case, the graph can be partitioned into two feuding factions: mutually

exclusive cliques within which relations are positive, and between which relations

are negative.

The overall aims of this dissertation are: to analyse how opinion dynamics drive

initially imbalanced graphs to balanced states, along with their associated stability

and convergence criteria; to present and test control mechanisms to drive graphs to

a desired state; and to generalise the dynamics to more complex multiplex graph

topologies.
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Throughout the work we seek to interpret our mathematical analysis through

the lens of social relations: graph edges represent opinions; dynamics represent

the effects of communication and gossiping; control represents biases, historical

allegiances, or known opinion influences; and layers of multiplex graphs represent

different arenas of social interaction between the same entities.

The layout of the dissertation is as follows. In Chapter 2 we introduce the socio-

psychological basis and subsequent graph-theoretic formulation of social balance

theory. We outline the theorems and associated proofs which ground the intuition

behind the ‘balancing effect’ of dynamical models of opinion networks and motivate

the use of models in continuous time. We then explore existing continuous-time

models in Chapter 3, their associated conditions for bringing an initial random

graph to a state of balance, and how the dynamics may be bounded to prevent

opinions diverging. We consider an alternative model on directed graphs. Chap-

ter 4 contains the bulk of the novel contributions of the dissertation. We out-

line proofs of convergence and the stability of balanced states for a non-diverging

model. We present a control mechanism that leads the graph to a desired state,

termed the diplomatic target. Two cases are presented, applying the model to in-

ternational relations preceding WWI and to a study of social fission of members in

a karate club. We then generalise the bounded dynamics to multiplex graphs, and

analyse the associated convergence and stability of balanced states. We outline

natural extensions to the work and conclude in Chapter 5.
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Chapter 2

Background

In complex systems science, there are three broad approaches used to model friend-

ship, enmity, and conflict.

The first concerns statistical modelling, which dates back to the 1940s where

Richardson [2] showed that the distribution of fatalities of conflicts follow power

laws. Examples of more modern approaches include data-mining of news sources

to gauge political sentiment [3], or modelling incidents of acts of terror as self-

exciting Hawkes processes, such as those during the Troubles [4]. Cervantes [5] used

a decision-tree algorithm to predict conflict between nations based on data such

as flights, migration, and visa requirements. These approaches are powerful, but

data-constrained, and lack the deeper understanding of dynamic mechanisms at

play, the models sometimes lacking explainability or providing any causal inference.

Another approach is via agent-based modelling (ABM), involving the simula-

tion of a large number of interacting agents following simple instructions, allowing

us to investigate claims and causal mechanisms such as the distribution of political

responsibility, gang rivalry [6], ethnic and culturally-motivated differentiation and

violence [7], and the role of warfare in the emergence of large societies [8]. The

main drawback of ABM however is that it is limited by complexity for which, in

large-scale systems, the associated algorithms quickly become intractable.

The final approach is in dynamic modelling of interactions. Dynamical models

of the relations between entities in a network may be prescribed by the rules of

social balance, spatial distribution, or other indicators such as military imbalances

and well-being metrics [9]. This is the general approach taken in this disserta-
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tion, as it is interesting mathematically and does not rely on a replete dataset,

computational tractability, data-model fits, or much of the work involved in data

mining.

This chapter outlines requisite knowledge from network theory, details Heider’s

theory of social balance and its interpretation in the context of a signed graph,

and motivates the dynamical models of opinion formation within such graphs.

2.1 Definitions from graph theory

We outline some background notions from network theory that are used in the

course of the dissertation. Many of the definitions are available in Newman [10].

A linear graph represents pairwise relations between n ∈ N members or agents,

denoted by G(V,E) where V is a finite set of vertices or nodes V = {1, . . . , n} and

E = {(i, j)|i, j ∈ V } a prescribed list of (possibly ordered) pairs of vertices repre-

senting edges. Neighbouring vertices i and j are incident to the edge (i, j). The

cardinality of V is the graph size, |V | = n. Computationally, edge lists are stored

for representing a graph structure, but another useful means for representation is

via an adjacency matrix A ∈ {0, 1}n×n, whose entries are given by,

Aij =

{
1, if (i, j) ∈ E
0, otherwise.

Entries Aii represent self-loops or reflexive relationships. The presence or absence

of such relations is acknowledged in different models presented in the course of

this dissertation. Inclusion of a negative relation, such that A ∈ {−1, 0, 1}n×n,

constitutes a signed graph.

In directed graphs, the orientation of an edge between two vertices is specified

in the order by which the pair is given in E, (i, j) indicating an edge from i to j.

Correspondingly, adjacency matrices of directed graphs are typically asymmetric.

Traditionally the Aij entry represents an edge from j to i [10], yet much of the

literature relevant to this dissertation specifies the Aij entry as an edge from i to

j, hence we follow the latter convention.

In regular linear graphs, edges are treated as a binary specification of the

relation between two vertices. To allow for a varying strength of relations, weighted
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graphs are used. In a weighted graph, G(V,w), a function w generally quantifies a

non-negative edge-weight between two vertices. In this dissertation, however, we

are concerned with weights that vary over the entire real line, w : V × V → R
instantiating G(V,w) as a signed weighted graph. The idea is that the inclusion of

negative weights allows for the specification of both positive and negative social

relations between vertices representing social entities. In the case where w is

symmetric,

w(i, j) = w(j, i), ∀ i, j ∈ V,

and G is undirected. The signed weighted adjacency matrix is denoted as X ∈
Rn×n, with entries

Xij = w(i, j).

A sequence of v1, . . . , vp, vp+1 neighbouring vertices is known as a path of length

p. In the case where v1 = vp+1 the path is a cycle. The vertices comprising a cycle

of length three form a triad. In a signed graph, the sign of a cycle is the product

of the signs of the vertices that make up the cycle.

The degree of a vertex is the number of edges incident to that vertex. The

graph G is considered fully connected or complete when every vertex is connected

to every other vertex in G. In the case where w(i, j) = 0 for many pairs of

vertices, i.e. |E| � |V |, the graph and adjacency matrix X are considered sparse.

An example of such is a triangular lattice graph with large |V | where, in the case

of periodic boundary conditions, every vertex has degree 6, independent of |V |,
which we refer to in later sections.

Multiplex graphs are representations of multilayer networks where the node-

set V is identical across each layer [11]. In cases where the node-set across each

network is different, the graph is referred to as multilayer [5]. For a multiplex

network with n vertices in each l = 1, . . . , L layers, the associated adjacency matrix

for a given layer l ∈ L is given by X(l) ∈ Rn×n. The parentheses are omitted in

cases where the meaning is unambiguous.

When representing social networks, a number of notions relating to the struc-

ture and dynamics of signed graphs may be defined, chiefly the notions of balanced

relations and balanced graphs. To motivate these, we first outline some of the un-

derlying socio-psychological concepts of Heider and the gap to graph theory that
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was bridged by Harary and Cartwright [1]. Beyond social systems, notions of

balance and frustration are observed in Ising’s model of magnetic spin-glasses [12].

2.2 Heider’s Theory of Social Balance

The notions of social balance date back to Heider’s theory of attitudes and cog-

nitive organisation in social systems [13]. Here, the balance of subjective social

relations between entities is considered based on ‘attitudes’ L, i.e. liking and dis-

liking, and ‘cognitive units’ U such as possession, belonging, and proximity. A

balanced state is defined between two entities if the relation between them is posi-

tive or negative with respect to all meanings of L and U . In a set of three entities,

also known as a triad, a balanced state exists when all relations are positive, or

two are negative and one is positive. Heider’s concept of relations tending towards

such balanced states is driven most typically by communication between entities.

Newcomb [14] develops a more objective theory (in the sense of not stating

internal states of entities) based on interpersonal communication, where the rela-

tions between entities may be inferred based on how they exchange information.

Newcomb’s notion of relations which “strain towards symmetry” is applied to

studies on attraction and group homophily, concluding that entities will continue

or discontinue their association to increase attraction and perceived symmetry,

reflecting Heider’s more general theory of “tendency towards balance”.

The common denominator of both theories is that communication between

entities is the mechanism by which social groups move towards states of balance.

This is the idea we keep in mind when investigating various dynamical models.

2.3 Harary-Cartwright formulation

Cartwright and Harary propose a generalisation of Heider’s social balance from a

graph-theoretic perspective [1]. Given that the sign of a cycle or path is the product

of the signs of the constituent edges, a cycle with a positive sign is considered

balanced. This leads to the following theorem by Harary-Cartwright defining a

balanced graph, the proofs for which are outlined in [15].

6



Theorem 1. A signed graph G is balanced if and only if the sign of every cycle

in G is positive.

An equivalent definition relating to the sign of any given path between two

points is given by the following theorem.

Theorem 2. A signed graph is balanced if and only if every path between each

pair of distinct vertices has the same sign.

From a computational perspective, Theorem 2 is not very interesting, as the

cost of checking the sign of every path between every distinct pair of vertices,

O(n3) [16], is equivalent to checking the balance of every cycle in the graph as

per Theorem 1. What is more relevant is the interpretation of how influence is

exerted between entities in a balanced graph G. If we consider the sign of an edge

denoting a positive or negative influence, the influence of vertex A on vertex B

will be the same no matter what path in G the influence passes from A to B.

Some imbalanced graphs may be closer to balance than others. The coherence

of influence exerted on an individual is thus a function of how close the graph is

to balance. This is quantified via the degree of balance of a graph, defined as the

ratio of positive cycles to total cycles. If C(G) and C+(G) are the number of cycles

and positive cycles, respectively, the degree of balance of G is

b(G) =
C+(G)

C(G)
.

Note that b(G) depends on the structure of the graph, and can only take

discrete values. For instance, a graph consisting of a single imbalanced triad has

b(G) = 0. Hence, as advised by Harary-Cartwright, any interpretation of a specific

value b(G) should account for the distribution of b(G), determined by the structure

of G.

A balanced graph exhibits an interesting property where it may be partitioned

into two mutually exclusive consortia or factions, where relations are positive

within factions and negative between factions. The Structure Theorem [15] for-

malises this notion, which is also referred to as social mitosis [17]. Note that one

faction may have size zero, in which case the entire graph is in a state of consensus

or ‘utopia’, otherwise the state is termed bipolar.
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Theorem 3 (Structure Theorem). A fully connected signed graph, G, is balanced

if and only if its vertices can be partitioned into two cliques, V1 and V2, within each

all edges are positive and between each all edges are negative.

Proof.

Necessity. Let A1 be any vertex of G, where V1 is the set of A1 and all vertices

positively adjacent to A1, and V2 the set of vertices negatively adjacent to A1. Then

V1 ∩ V2 = ∅. In V1, any two distinct points B1 and C1 are positively adjacent.

If either B1 or C1 are A1 then this is true by construction, otherwise the cycle

A1B1C1 contains positive edges A1B1 and A1C1. For a balanced graph this cycle

is balanced, hence B1C1 must also be positive. For vertices B2 ∈ V2, C2 ∈ V2

the edge B2C2 must be positive for the cycle A1B2C2 to be positive, similarly for

B1 ∈ V1, C2 ∈ V2, the edge A1B1 must be positive for A1B1C2 to be positive.

Sufficiency. Assuming the graph may be arranged into two opposing cliques as

stated in the theorem, every cycle in G contains an even number of negative edges

between cliques V1 and V2. Hence every cycle in G is positive and by definition G

is balanced.

The proof of necessity relies on the fact that triads (cycles of length three) are

balanced if they contain two or zero negative edges.

A result of the structure theorem is that the associated adjacency matrix of a

balanced graph will have some permutation of the following block sign structure,

X =
(
+

)
or

(
+ −
− +

)
∈ Rn×n

The sign structure of X may be easily permuted and displayed to check if the

above sign structure holds. From a computational perspective, this is useful in our

context as a visual confirmation of social balance.

The Structure Theorem may be interpreted from a perspective of influence ex-

ertion. Given two cliques obeying the structure theorem (thus instantiating a bal-

anced graph), we find the exertion of influence will “produce homogeneity within

cliques and opposing opinions between cliques”, creating diverging opinion magni-

tudes i.e. polarisation. As noted, the exertion of influence becomes more coherent

or, in Heider’s terms, the tendency towards balance becomes more pronounced, as

8



Figure 2.1: “My enemy’s enemy is my friend” [1]. Balanced (left, mid-left) and
imbalanced (right, mid-right) triads.

the graph approaches a balanced state. This also reflects the echo hypothesis [18],

where opinions within a balanced group, either positive or negative, are enhanced

by further communication with others. Furthermore, this argument can also be

made via homophily [10] - as two factions emerge there is a stronger, not weaker,

social pressure to conform with one faction or another.

The analytic effect of increasing influence exertion is witnessed in dynamical

models where edge-weights and time are continuous [17, 19, 20]. In these cases,

positive and negative edge-weights diverge as the graph tends towards a balanced

state. This is one of the reasons motivating our focus on continuous models.

2.4 Social balance and triadic relations

In complete graphs, a sufficient condition for a complete graph to be balanced is

if all of the triads 4ijk in the graph are balanced [21],

XijXikXjk > 0, ∀ i, j, k ∈ V.

The central idea is that “friends agree in their opinion of a third party”. In social

systems, there is typically an overexpression of the balanced triads shown in Fig-

ure 2.1 [5]. It has been shown that social entities which are part of an imbalanced

triad experience stress, also termed social frustration or cognitive dissonance, and

tend to change their opinions to reduce the number of imbalanced triads in their

social network [22]. Hence, this naturally motivates the investigation of dynamical

models which drive a graph towards a socially balanced state.

9



2.5 Social balance and conflict

Explicit prediction of conflict is notoriously difficult versus other events such as

earthquakes as, by definition, social actors involved in the outbreak of conflict

break rules. The essay [23] provides an overview on the challenges of such pre-

diction. However, in practice social entities are observed to arrange themselves

into a balanced configuration before the outbreak of widespread bilateral conflict,

indicating that standard social balance and the threat of large-scale conflict are

positively correlated. A noteworthy example of this is the diplomatic relations

between entities leading up to WWI. The alliances and defections between nations

in the years preceding WWI are illustrated in Figure 2.2, as detailed by Antal et

al. [24]. As is shown, the final state may be partitioned into two mutually op-

posing factions, in this case representing the Axis and Allied forces which, by the

Structure Theorem, constitutes a socially balanced graph. This is merely noted

as an empirical example in Antal et al., however, we present a comparison and

verification with our own models in later sections.

The literature is replete with other examples of the connection between social

organisation, conflict, and Heider’s balance theory. Moore [25] presents five studies

of international conflicts which result in perfect or near-perfect balance. Cervantes

[5] studies multilayer networks of nations, deriving a multilayer balance measure

that was shown to have a high correlation with the subsequent outbreak of conflict.

Smeets et al. [26] analyse 170 present-day Dutch novels, finding that the “majority

of triadic conflicts exist in a state of social balance”. Szell et al. [27] study six

different types of interaction between agents in a massive online multiplayer game,

providing a multiplex network validation of structural balance theory. Numerous

other examples are referenced in the survey article [21].

2.6 Discrete dynamics

Antal et al. [24] present discrete-time and weight models of dynamics of triads

in a fully connected graph, such that A ∈ {−1, 1}n×n. They investigate the long-

time dynamics and phase transitions with respect to the density of friendly edges,

ρ, in the graph. The idea is that the models reflect known human behaviour to

10



Figure 2.2: Faction formation in the period 1872-1907 prior to the outbreak of
World War I in 1914, from [24]. Blue lines indicate alliance, dashed red lines
indicate enmity. Countries listed are Great Britain (GB), Austria-Hungary (AH),
Germany (G), Italy (I), Russia (R), and France (F).
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reduce the number of imbalanced triads in a social environment. Two models are

presented: local triad dynamics (LTD) and constrained triad dynamics (CTD).

The social interpretation of LTD is of the “social graces of the clueless”, where

friends are formed randomly without consideration of how the balance of other

relationships is affected. The governing model consists of a master equation con-

taining four compartments, describing the stochastic change in densities of triads

with k ∈ {0, 1, 2, 3} unfriendly links.

In CTD, a random relationship is flipped provided it increases the total number

of balanced triads. This may be interpreted as the dynamics of a graph consisting

of individuals who, when changing a relationship, will first consider the balance of

their entire social network.

A number of criticisms may be levelled against discrete approaches versus con-

tinuous ones. First is the lack of agreement between qualitative arguments and

numerical results which are outlined for CTD in [24]. Additionally, graphs follow-

ing discrete models are shown to approach a balanced state asymptotically. This

contradicts the notions of influence exertion introduced earlier1, a limitation not

witnessed in continuous models. Furthermore, the decision of ‘which link to flip’

is not encountered in continuous models. Finally, discrete dynamics such as LTD

contain fixed points at imbalanced graph states, known as jammed states. Such

phenomena are not typically encountered in continuous dynamical models, which

hence motivate the focus on the latter from here onward.

1As the graph tends towards balance, the exertion of influence is more coherent, hence the
rate at which the graph tends towards balance becomes greater.
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Chapter 3

Continuous dynamics

This section investigates various models available in the literature for the generic

matrix initial value problem, with X(t) ∈ Rn×n,

Ẋ = F (X), X(0) = X0. (3.1)

Ku lakowski et al. [17] first introduce a dynamical model of social balance in

which X(t) ∈ Rn×n represents the weights of an adjacency matrix of a graph G,

which are allowed to vary continuously in time. This approach is taken to allow

edges to vary in strength as well as in sign. X(t) is interpreted as an opinion

or reputation matrix, where the entry Xij denotes vertex i’s opinion of vertex j,

positive (negative) entries indicating friendly (hostile) relations. The differential

equation (4.1) specifies how the opinions of each vertex are updated. G is assumed

to be a signed undirected graph, hence opinions between nodes are symmetric,

X(t) = X(t)T , ∀ t > 0. As mentioned previously, the triad 4ijk composed of

vertices i, j, k, is balanced if XijXikXkj > 0.

For symmetric initial conditions, the following continuous-time model is pro-

posed in [17],

Ẋ = X2, X(0) = X(0)T , (3.2)

or, in elementwise notation,

Ẋij =
∑
k∈V

XikXkj, i, j ∈ V. (3.3)

We may interpret this matrix differential equation as a gossiping mechanism. Here

i changes its opinion of j by considering the relative opinions of every vertex k.

13



This model reflects both Heider and Newcomb’s theories in that communication

is the mechanism of change in social structures. The product of the signs of edges

Xik and Xkj force Xij in a direction that balances the triad 4ijk. A variant of

these dynamics excluding self-loops is shown to lead to a balance for n = 3 vertices

[17]. Numerical results indicate balance is achieved for any n, however, this is not

proven analytically.

Although the signs of the opinion matrix X(t) reach a balanced state, the en-

tries tend to blow up in finite time. This reflects the property mentioned earlier

that graphs reaching balance are characterised by diverging opinions, where co-

herent influence exertion creates positive feedback. Yet, as argued in [17], extreme

opinions tend not to spread as we prefer to be considered civilised. Addition-

ally, the well-known Bogardus scale [28] quantifying social distance is finite. Thus

to avoid the blow-up of opinions, an elementwise envelope function C(X;R) is

adopted based on Bogardus’ social distance. This leads to the following non-linear,

elementwise modification of the system

Ẋij = C(Xij;R)
∑

k∈V \{i,j}

XikXkj =

(
1−

X2
ij

R2

) ∑
k∈V \{i,j}

XikXkj. (3.4)

where R > 0. Note that this introduces n2/2 fixed points into the system satisfying

Xij = ±R ∀ i, j ∈ V , the factor of 1/2 owing to X being symmetric. It is argued

in [17] based on computational results that values of R ≥ 5 do not influence the

dynamics until balance is reached. For R =∞, corresponding to C(X;R) = 1, the

uninhibited system (3.2) is recovered. Note that in order to prove convergence to a

balanced state and to analyse the stability of the fixed points in [17] and [29], the

model (3.4) does not contain self-loops, i.e. k /∈ {i, j}. We prove similar results

for a model with self-loops in later sections.

The initial condition X0 is chosen in [17] such that the upper triangular entries

are independent and identically distributed (iid) random variables, drawn from a

uniform distribution of unit width around zero, Xij(0)
iid∼ U(−1/2, 1/2), i ≤ j. The

strictly lower diagonal entries are then filled such that the matrix is symmetric.

Numerical results in [17] show that, given a large number of vertices n > 100,

the time taken for the graph to reach a balanced state, t∗, follows

t∗ ∝ n−1/2. (3.5)
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The authors justify this as (i) the velocity of an opinion or edge, Ẋij, is given as a

summation over n nodes k in (3.2), which grows linearly in n, however (ii) in the

initial condition X(0) ∼ U(−1/2, 1/2), the deviation of the sum of entries from

zero decreases with n−1/2. The total contribution of increasing n on the velocity

is n1/2, with time as its inverse hence given by (3.5). It is noted that this holds

only when the initial distribution U is symmetric about zero.

3.1 Convergence to a balanced state

An open problem left in [17] is a proof for generic n that the system (3.2) will

bring an initial symmetric matrix X(0) to a balanced state. Marvel et al. [19]

prove this for large n by developing a closed-form expression for faction member-

ship as a function of the initial conditions, taking advantage of the symmetry of

the problem via spectral methods. They show analytically that the signs of the

graph edges converge to a balanced configuration consisting of either a bipolar or

consensus state. The solution is shown to take the form X(t) = QΛ(t)QT , where

the eigenvectors remain constant with respect to time. It is also stated that this

form of solution occurs more generally for Ẋ = F (X) when F (X) is a polynomial.

This is not proven in the paper, thus we derive it below.

Given a matrix polynomial of degree M , we let F (X) =
∑M

m=0 amX
m. The

following proof shows that, assuming symmetric initial conditions, the solution

takes the form X(t) = QΛ(t)QT . Hence, it is sufficient to model the evolution of

the eigenvalues Λ(t) to understand the evolution of the whole system.

Letting (λ1, λ2, . . . , λn) denote the decreasing eigenvalues of X(0), we express

the initial conditions via a symmetric eigenvalue decomposition as

X(0) = QΛ(0)QT , Λ(0) = diag(λ1, . . . , λn), (3.6)

and letting Y (t) = QΛ(t)QT , we show that Y (t) is identical to the solution X(t)

by uniqueness. We differentiate Y (t) with respect to time,

Ẏ = QΛ̇QT = QF (Λ)QT (3.7)
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and, as QQT = In, note that the polynomial in Y (t) may be expressed as,

F (Y ) =
M∑
m=0

amY
m

=
M∑
m=0

am(QΛQT )m

= Q

[
M∑
m=0

amΛm

]
QT

= QF (Λ)QT . (3.8)

Y (t) satisfies the flow Ẏ = F (Y ) and shares the initial condition Y (0) = X(0),

hence by uniqueness, X(t) ≡ Y (t) = QΛ(t)QT . Given eigenvectors Q of X(0), for

a solution at time t it hence suffices to solve the eigenvalue evolution for Λ(t),

Λ̇ = F (Λ), Λ(0) = diag(λ1, . . . , λn). (3.9)

Now returning to the derivation outlined in [19] for F (Λ) = Λ2, the solution to

this decoupled (diagonal) system is

Λ(t) =


λ1

1−λ1t
. . .

λn
1−λnt

 , t ≥ 0. (3.10)

Note that this solution is only valid when t is less than the minimum radius of

convergence which, assuming the largest eigenvalue of X(0) is positive, is given by

t < 1/λ1. The solution at a given time X(t) may be expressed as a linear com-

bination of rank-one matrices corresponding to the eigenvectors Q = (q1, . . . ,qn),

again for λ1 > 0,

X(t) =
n∑
i=1

Λii(t)qiq
T
i , t <

1

λ1
. (3.11)

Expanding denominators of Λii in powers of t gives X(t) = X(0) + X(0)2t +

X(0)3t2 + . . . with which the solution may also be written

X(t) = X(0) [I −X(0)t]−1 , t <
1

λ1
. (3.12)
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Noting that the singularity occurs at t∗ = 1/λ1 given the conditions: (i) λ1 > 0;

(ii) λ1 > λ2; and (iii) all components of q1 are non-zero; we can see directly from

the summation (3.11) that X(t) collapses to the rank-one matrix,

lim
t→t∗

X(t) = Λ11q1q
T
1 . (3.13)

Normalising X(t) by the Frobenius norm serves to remove the scaling term Λ11,

lim
t→t∗

X(t)

||X(t)||F
= Q diag(1, 0, . . . , 0)QT = q1q

T
1 . (3.14)

3.1.1 Convergence conditions

There are three conditions for an initial symmetric random matrix (with entries

drawn independently from a symmetric continuous distribution) to converge to a

balanced state: (i) λ1 > 0; (ii) λ1 > λ2; and (iii) all components of q1 are non-zero.

All three are satisfied in the large-n limit, which is proven below, from [19].

(i) This requires more specification on the entries of X(0). Given a symmetric

probability distribution G the diagonal and off-diagonal entries are given by

Xij(0)
iid∼ G(τ, ν2), i < j

Xii(0)
iid∼ G(µ, σ2)

Xij(0) = Xji(0), i > j.

(3.15)

Given the second moments ν2 and σ2 of G are finite, it can be shown [30]

that Wigner’s semicircle law applies as n→∞ with high probability, which

specifies that the distribution of the eigenvalues of X(0)/
√
n is compact and

centred around zero. Hence, in probability for large n, λ1 > 0.

Note that in this dissertation we typically let the first and second moments

be the same for all entries, τ = µ, ν2 = σ2, and define G as the normal

distribution, adopting the notation X(0) ∼ N (µ, σ2).

(ii) Given the characteristic polynomial P of X(0) and its derivative Q, X(0)

has distinct eigenvalues (and hence λ1 6= λ2) provided the P and Q do not

share a common root. P and Q have a common root when the determinant
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of the Sylvester matrix composed of P and Q is zero. The determinant is

a multivariate polynomial in entries of P and Q and is non-trivial, as there

exist symmetric matrices with distinct eigenvalues, hence the set of matrices

for which this determinant is zero has Lebesgue measure zero. Assuming

X(0) is drawn from a distribution that assigns probability zero to matrix

sets of Lebesgue measure zero, it follows in probability that P and Q do not

share a common root, and that every eigenvalue of X(0) is distinct. Hence

λ1 6= λ2 and, where λ1 denotes the largest eigenvalue, λ1 > λ2.

(iii) If q1 contains a zero at index i, then defining q̃1 ∈ Rn−1 as q1 with the

i-th entry removed, and X̃(0) ∈ R(n−1)×(n−1) as X(0) with the i-th row and

column removed, q̃1 is an eigenvector of X̃(0) corresponding to the same

eigenvalue. Hence the corresponding characteristic polynomials P and P̃

share a common root, in which case the determinant of the Sylvester matrix

composed of P and P̃ is zero. By the same argument used for condition (ii),

the set of matrices that satisfy this requirement has Lebesgue measure zero.

Hence it follows in probability that all entries of q1 are non-zero.

It is noted that both (ii) and (iii) hold for all n, whereas (i) holds in the large-n

limit. Provided condition (iii) holds, the positive and negative index sets of the

eigenvector q1, given by S = {k : q1k > 0} and T = {k : q1k < 0} respectively,

partition the vertex indices into two opposing cliques of friends which, via the

Structure Theorem, instantiate a balanced graph. Thus the paper [19] concludes

that provided conditions (i)-(iii) hold, which they do with probability one in the

large-n limit, the system (3.2) will bring an initial random matrix to a balanced

state in finite time.

3.1.2 Forward Euler scheme

We use a forward Euler scheme to verify the results in [17] and [19]. Noting the

convergence results and conditions from the previous sections, for large n we define

convergence as a balanced complete graph as time approaches t∗ = 1/λ1. This is

given (with high probability in large n) that the largest eigenvalue λ1 of X(0) is

simple and positive, and the associated eigenvector contains no zero entries. The
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Figure 3.1: Agreement between analytic and numerical solutions to (3.2) (cen-
tre), given symmetric initial conditions drawn from a standard normal distribution
X(0) ∼ N (0, 1) (left). Yellow indicates positive entries and purple negative en-
tries. A permutation of the index set of vertices, P (·), illustrates that the end-state
has a balanced sign structure by Theorem 3. Plotted in Python with n = 16.

numerical solutions are obtained with the time discretisation ∆t = t∗/M such that

Xm = X(m∆t) with

tm = m∆t, m = 0, 1, . . . ,M − 1, (3.16)

and instantiating a forward Euler scheme,

Xm+1 = Xm + F (Xm)∆t. (3.17)

Figure 3.1 compares the analytic solution (3.12) and numerical solution (3.17),

illustrating the sign structure of X at a time just before the singularity at t = t∗.

These ‘final states’ are plotted at T = t∗ − ε and t = (M − 1)∆t for the analytic

and numerical solutions respectively. A permutation of the final state shows that

the sign structure satisfies the Structure Theorem, hence the graph is balanced.

Note here that n = 16, resulting in factions of different sizes. For larger n the

factions in the end state tend to equal size, see [19] for proof.

The associated dynamics of X(t) under the Ku lakoski model (3.2) are shown

for t ∈ [0, t∗) in Figure 3.2. The results are illustrated for initial distributions with

means 0 and 1, which result in bipolar and consensus final states respectively,

consistent with [19].

It is proven in [19] that X(t) converges to a rank-one matrix for symmetric

initial conditions, corresponding to an undirected graph. Traag et al. [20] show
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Figure 3.2: Numerical dynamics of the entries of X(t) under (3.2), coloured green
(positive) and red (negative) corresponding to the sign of the entry on approaching
t∗ = 1/λ1, shown as a dotted black line. The resulting balanced states are bipolar
for µ = 0 (left) and consensus for µ = 1 (right). Plotted in Python with n = 32.

that this is also the case for normal initial conditions. They later show that

convergence does not happen, in general, for non-normal initial conditions (and

hence directed graphs in general), a proof of which is outlined in [20].

3.2 Model for directed graphs

Traag et al. [20] propose an alternative initial value problem that converges to

balance for directed graphs, given by

Ẋ = XXT , X(0) = X0, (3.18)

or, in elementwise notation,

Ẋij =
∑
k∈V

XikXjk, i, j ∈ V. (3.19)

In the context of the earlier interpretation of the dynamics representing gossiping

mechanisms, here vertex i considers j’s opinion of all the vertices k in the graph

and updates its opinion of j accordingly.

Although the interpretation of this alternative mechanism is not as intuitive

from a gossiping perspective, it is proven in [20] that X(t) converges to a symmetric
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rank-one matrix for the initial value problem (3.18) with generic, non-normal initial

conditions, X0 ∈ Rn×n. The proof relies on the fact that the differential equation

is symmetric and that any matrix may be decomposed into symmetric and skew-

symmetric components, X(t) = S(t) + A(t). As XXT is symmetric the flow

only acts on the symmetric components of X, where skew-symmetric components

remain constant, given by A0. The solution hence takes the form

X(t) = S(t) + A0, (3.20)

where S(t) can be found by letting Ŝ = e−tA0SetA0 and solving

˙̂
S = Ŝ2 − A0, Ŝ(0) = S0. (3.21)

Under specific conditions outlined in [20], the growth of the symmetric component

then drives the entire solution to a state of balance.

3.2.1 Numerical comparisons

Here we replicate and compare numerical solutions to the models presented in

[17] and [20], F (X) = X2 and F (X) = XXT respectively. For symmetric initial

conditions, symmetry is preserved under both flows, hence X(t) = X(t)T ∀ t, in

which case the solutions under both models are identical, driving the graph to the

same balanced state as shown in Figure 3.3. This is of course not the case for

non-symmetric initial conditions where, as mentioned in the previous section, only

the latter reaches a balanced state, shown in Figure 3.4.

We note a lack of qualitative explanations in the literature as to why only

the latter model drives non-symmetric initial conditions to balance. We suggest

one here. In the former model F (X) = X2, the product XikXkj which guides

Xij towards balancing the triad 4ijk accounts for paths in one direction only:

from i to k to j. The latter model is bidirectional, owing to the presence of XT ,

driving balance in both directions and hence leading asymmetric graphs to states

of balance. We found and verified computationally that other permutations of

the above models lead to balance for asymmetric initial conditions, provided they

contain a factor of XT , e.g. (XT )2, XTX.
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Figure 3.3: Comparison of the convergence for symmetric initial conditions. The
index set of vertices is permuted in the final states to yield the illustrated block
sign structure, showing both models are balanced. Plotted in Python for n = 32.

Figure 3.4: Comparison of the convergence for generic non-symmetric initial con-
ditions. Here, only the model F (X) = XXT converges to balance. Plotted in
Python for n = 32.
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Figure 3.5: Time dynamics of balance of for F (X) = X2 [17] and F (X) = XXT

[20] models, for non-symmetric initial conditions (left) and symmetric initial con-
ditions (right). In the non-symmetric instance, the former model fails to converge
to balance with a final state of b(G) ≈ 0.7 at the singularity.

The dynamics of the degree of balance b(G) under each model is shown in

Figure 3.5 for symmetric and non-symmetric initial conditions, from which we can

also infer the rate at which the model drives the graph towards balance. As noted,

the dynamics are identical for symmetric initial conditions and only the model

F (X) = XXT drives the graph to balance for non-symmetric initial conditions,

indicated by b(G) = 1. In cases where balance is achieved, the rate of change

of balance increases as the graph becomes more balanced, reflecting increased

coherence of influence and pressures to conform within the graph, as we argued is

a benefit of continuous models in earlier sections.

3.2.2 Behaviour on other graph topologies

A natural progression of the above work is to consider dynamics on other graph

topologies. However, the convergence conditions outlined earlier and in [19] for a

balanced, fully connected end-state still hold. Thus, provided that the graph is

not disconnected and satisfies such conditions, the graph will still converge. This

is demonstrated on a signed triangular lattice with periodic boundary conditions.

In two dimensions, this defines a triangulation of a torus, which we define as the
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Figure 3.6: Form of X0 representing a non-symmetric torus triangulation (left),
corresponding to a triangular lattice with periodic boundary conditions, and the
resultant balanced state at the singularity under the flow F (X) = XXT (right).
Shown below each plot is the degree of balance b(G). Green indicates no edge, i.e.
a weight of 0. n = 64.

non-symmetric edge-set T , and draw the edge weights from a normal Gaussian

distribution,

Xij ∼ N (0, 1), (i, j) ∈ T

Xij = 0, (i, j) /∈ T .
(3.22)

As the graph is not disconnected and the distribution of the entries of X(t) is

symmetric about zero, by the conclusions from [19] and [20] we expect the flow

Ẋ = XXT to drive the initial condition to a fully connected, balanced, bipolar

state. The (non-symmetric) triangular lattice adjacency matrix is generated in

code for any n, and the resultant balanced state is computationally verified, as

shown for n = 64 in Figure 3.6.

3.2.3 The symmetry of end states

We note that even for non-normal initial conditions, the final (balanced) state un-

der the model (3.18) is symmetric [20]. This is consistent with the graph-theoretic

formulation of structural balance as first investigated by Harary-Cartwright [15].

They conclude therein that whenever the edges Xij and Xji are of different signs,

the signed graph containing them is not balanced. Hence, even for asymmetric

initial conditions, it is a necessary condition that the final state is symmetric.
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Although the model Ẋ = XXT is interesting from a directed graph perspec-

tive, we limit many of our further investigations to the symmetric case with the

associated model Ẋ = X2. The motivation for this is two-fold. The first is that

symmetry of relations is a necessary condition for a balanced graph, as outlined

above. The second is sociological, in that humans are typically effective at per-

ceiving positive and negative sentiments of others, such that relations between

individuals have a natural tendency toward symmetry [31].

3.3 Other models

Another model is that of Shang et al. [32], who argue that vertices do not perceive

the opinions of others perfectly, due to normative pressure in the social environ-

ment or the persistence of initial impressions. Hence a discrepancy between real

sentiment X and “perceived sentiment” X̂ is encountered, and the latter is mod-

elled as a combination of actual sentiment and an ‘outside influence’ matrix.

Wongkaew et al. [29] investigate an optimal control strategy of the modified

system (3.4) through the use of a leader vertex which steers the dynamics towards

a state of consensus. The leader is denoted as the zeroth vertex in the following

control system with initial conditions X(0) = X0 and u(0) = u0,

Ẋ0i = ui(t),

Ẋij =
1

n− 2

(
1−

X2
ij

R2

) ∑
k∈V \{i,j}

XikXkj + γX0iX0j,
(3.23)

where γ is a static control parameter and the control variable ui(t) represents the

prescribed edge weight between the leader and vertex i.

The optimal control ui(t) driving the graph to a state of balance is then de-

termined by defining a cost functional J which is minimised subject to the initial

value problem (3.23) using a Runge-Kutta scheme and conjugate gradient method.

A drawback of this method however is that it can drive the graph to consensus,

but not to bipolarity. This limitation is overcome by a control model we introduce

in later sections.

25



In this chapter we investigated existing unbounded models in continuous time,

numerically replicating the dynamics which diverge at a time t∗ = 1/λ1 and outlin-

ing the associated conditions required for the graph to tend to a state of balance.

The behaviour over different linear graph topologies is the same, provided the

graph is not disconnected, and we illustrate an example of this. We provide a

qualitative argument for why a model on directed graphs leads to a state of bal-

ance. However, we note that at a balanced state relations must be symmetric, and

hence we motivate our focus on the model Ẋ = X2. This model forms a base from

which we consider various extensions, outlined in the following chapter.
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Chapter 4

Model extensions

In this chapter we present extensions of the Ku lakowski model [17] on undirected

graphs, i.e. X0 = XT
0 . We first include a factor of 1/n in the basic model,

accounting for the size of the graph which we use going forward,

Ẋ = F (X) =
1

n
X2, X(0) = X0, (4.1)

or, in elementwise form,

Ẋij = Fij(X) =
1

n

∑
k∈V

XikXkj, i, j ∈ V. (4.2)

This slows the dynamics, the solution following eigendecomposition being domi-

nated by the leading eigenvalue,

Λ11(t) =
λ1

1− λ1
n
t
, (4.3)

with the singularity now located at t∗ = n/λ1.

To prove that t∗ is finite for large n we need to know the dependence of λ1 on

n. In the case where X0 is a symmetric Gaussian matrix with iid entries of mean

zero and variance one (for i ≤ j), we use the result from Bai and Yin [33] that the

eigenvalue distribution of X0/
√
n converges to Wigner’s semi-circle distribution on

[−2, 2] with probability one, hence

lim
n→∞

λ1√
n

= 2. (4.4)
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As the largest eigenvalue scales as λ1 ∼ 2
√
n in probability, then t∗ ∼

√
n/2. We

conclude that provided n is large but finite, the conditions required for convergence

outlined in Section 3.1.1 still hold for (4.1). This argument also connects the

numerical results of [17], t∗ ∝ n−1/2, with the arguments in [19], t∗ = 1/λ1.

4.1 Dynamics with saturation

With an appropriate non-linear modification of the system, the dynamics may be

bounded (smoothly) to some prescribed range [−R,R], as in [17, 29]. This is done

previously without considering self-loops, i.e. Xii = 0, ∀i ∈ V . To bound the

dynamics of (4.3), we outline the analogous model which includes self-loops. In

elementwise notation, this is given by,

Ẋij = Mij(X) =

(
1−

X2
ij

R2

)
Fij(X), i, j ∈ V. (4.5)

where Fij is ij-th entry of one of the dynamics discussed previously. By including

self-loops we can also define the model in matrix notation,

Ẋ =

(
1n×n −

X �X
R2

)
� F (X), (4.6)

where 1n×n denotes a matrix of ones and � the elementwise product. The forward

Euler solution for various initial conditions is shown in Figure 4.1. As the singu-

larity in the original system has been removed by the nonlinear modification, we

now refer to t∗ as the time the graph ‘saturates’ at a balanced steady-state.

4.1.1 Convergence

The condition for convergence to a balanced state for the model (4.5) excluding

self-loops is outlined in a paper by Wongkaew et al. [29], and given by

Xij(0) > −R, ∀ i, j ∈ V, (4.7)

however, we found this to be incorrect: we provide here a case which satisfies (4.7)

but does not result in a balanced graph. We then reformulate the arguments in

[29] into two lemmas that acknowledge this correction. This is applied to graphs

containing self-loops, not requiring zero entries on the diagonal.
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Figure 4.1: Forward Euler solution to (4.6) for a range of symmetric initial con-
ditions with R = 10, n = 32. The singularity of the unbounded model t = n/λ1
is shown as a dotted black line, illustrating that the non-linear modification slows
down the dynamics.

Consider an initial constant matrix, Xij = a ∀ i, j ∈ V , where −R < a < 0. In

this case every entry of X uniformly tends to zero from below, corresponding to a

fully disconnected graph. This is proven as follows. First we note that the set of

constant matrices C = {a1n×n | a ∈ R} is invariant under the flow (4.6),

M(a1n×n) =

(
1n×n −

a2

R2
1n×n

)
� 1

n
a212

n×n

=

(
1− a2

R2

)
1

n
a212

n×n

=

(
1− a2

R2

)
a21n×n ∈ C, (4.8)

noting 1n×n�1n×n = 1n×n and 12
n×n = n1n×n. Hence it suffices to solve the scalar

initial value problem,

ẋ =

(
1− x2

R2

)
x2, x(0) = a. (4.9)

which has fixed points at x∗ = {−R, 0, R}. To study how x approaches zero from

below, let x ∼ ε where |ε| � 1, such that

ẋ ∼ x2 +O(x4) (4.10)
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Figure 4.2: Plot of the case contradicting the condition (4.7). Here R = 10, hence
X0 = −8 1n×n > −R 1n×n, satisfying (4.7). However, the numerical solution of
the full system (red) approaches zero from below, converging to the asymptotic
solution (4.11) (black-dashed), instead of a balanced state with entries Xij = ±R.

Hence as x→ 0, the solution asymptotically approaches,

x(t) ∼ a

1− at
, (4.11)

which, for a < 0, it is clear that this converges to zero at leading order. Hence

every entry of the matrix X = a1n×n converges uniformly to zero for −R < a < 0.

In the case of a > 0, the matrix converges to a balanced state of consensus,

X = R 1n×n. We illustrate the former case computationally in Figure 4.2, showing

that it converges to the asymptotic solution (4.11).

With this result in mind, we reformulate the propositions in [29] correctly and

apply them to graphs with self-loops in the following two lemmas.

Lemma 4. Given a connected graph Xij(0) ∈ (−R,R), ∀ i, j ∈ V and X(0) =

X(0)T , then for t < t∗ the following result holds under the flow (4.6) with F (X) =
1
n
X2,

d

dt
Xij(t)Xik(t)Xkj(t) > 0, ∀ i, j, k ∈ V, (4.12)

where i, j, k are not necessarily distinct.
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Proof.

d

dt

∑
i,j,k∈V

XijXikXkj =
∑
i,j,k∈V

(
ẊijXikXkj +XijẊikXkj +XijXikẊkj

)

=
1

n

∑
i,j∈V

(
1−

X2
ij

R2

)(∑
k∈V

XikXkj

)2

+
1

n

∑
i,k∈V

(
1− X2

ik

R2

)(∑
j∈V

XijXjk

)(∑
j∈V

XijXkj

)

+
1

n

∑
k,j∈V

(
1−

X2
kj

R2

)(∑
i∈V

XkiXij

)(∑
i∈V

XijXik

)
. (4.13)

As the set of symmetric matrices X is invariant under F = X2, given symmetric

initial conditions, Xij(t) = Xji(t), ∀ t ∈ [0,∞), hence

d

dt

∑
i,j,k∈V

XijXikXkj =
1

n

∑
i,j∈V

(
1−

X2
ij

R2

)(∑
k∈V

XikXkj

)2

+
1

n

∑
i,k∈V

(
1− X2

ik

R2

)(∑
j∈V

XijXkj

)2

+
1

n

∑
k,j∈V

(
1−

X2
kj

R2

)(∑
i∈V

XijXik

)2

. (4.14)

Provided |Xij| < R, ∀ i, j ∈ V and the graph is connected, the above term is

strictly increasing. This occurs until the graph reaches a fixed point |Xij| = R or

|Xij| = 0 ∀ i, j ∈ V at a time denoted t∗.

Note that the statement (4.12) does not imply the graph ultimately reaches

a state of balance. As proven, the trivial fixed point X∗ = 0n×n, corresponding

to a graph with no edges, is an ω-limit point for all Xij = a ∀ i, j ∈ V , where

−R < a < 0, but it converges such that (4.12) holds for t ∈ [0,∞). The following

lemma, also a corrected reformulation of a proposition in [29], shows that if at

some point the graph in fact reaches balance, then either −R or R is an ω-limit

point for each entry Xij. We also prove this for graphs containing self-loops.
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Lemma 5. If a fully connected graph G is balanced, then under the dynamics

(4.6), for each entry of X, one of the points {−R,R} is an ω-limit point, i.e. the

following limit holds,

lim
t→∞

Xij(t) = ±R, ∀ i, j ∈ V. (4.15)

Proof. Define the potential

V (x) =
1

4

∑
i,j∈V

(X2
ij −R2)2 (4.16)

and take the derivative with respect to time,

V̇ =
∑
i,j∈V

(X2
ij −R2)XijẊij

=
1

n

∑
i,j∈V

(X2
ij −R2)Xij

(
1−

X2
ij

R2

)∑
k∈V

XikXkj

= − 1

nR2

∑
i,j∈V

(X2
ij −R2)2

∑
k∈V

XijXikXkj. (4.17)

If G balanced and fully connected, XijXikXkj > 0, ∀ i, j, k ∈ V , and hence V̇ ≤ 0.

If |Xij| 6= R for any i, j ∈ V , then V̇ < 0. Hence the limit (4.15) holds.

The additional factor of 1/2 in V (x) accounts for the fact that the graph is

undirected, such that each edge represented in the symmetric matrix X is only

counted once. The reason Lemma 5 is not applicable in the previously discussed

case of X = a1n×n for −R < a < 0 is that no graph containing equally weighted

negative edges is considered balanced, nor will such a graph reach a state of balance

as it asymptotically approaches 0n×n from below. Thus the result of Lemmas 4

and 5 is that under the model (4.6), provided |Xij| < R ∀ i, j ∈ V , a connected

graph tends towards a state of balance and, provided the graph in fact reaches a

balanced state, the edges converge to a value of ±R, corresponding to a balanced

fixed point.

4.1.2 Stability of utopian and dystopian states

Wongkaew et al. [29] also perform a local analysis around two specific fixed points:

all positive and all negative relations, i.e. X∗ij = R and X∗ij = −R, for all
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i, j ∈ V \ {i = j}, corresponding to balanced ‘utopia’ and imbalanced ‘dystopia’

respectively. To do so, the authors vectorise the matrix system and analyse the

associated Jacobian. We outline a similar proof including self-loops in the following

section, as it provides a basis for us to then prove the stability of all balanced fixed

points in general. However, we first note that there is a more straightforward way

of assessing the stability of the specific two fixed points addressed in [29] when

we include self-loops: it allows us to investigate the case X∗ = ±R 1n×n ∈ C, for

which we can simply analyse the Jacobian of the reduced system (4.9) at x∗ = ±R,

J(x) = 2x− 4

R2
x3, (4.18)

for which J(±R) = ∓2R. Hence X∗ = R 1n×n is stable and X∗ = −R 1n×n is

unstable. This is verified computationally and illustrated in Figure 4.3. This is

a reasonable result, as we know from Lemma 4 that the system drives the graph

towards a balanced state; the utopian fixed point X∗ = R 1n×n is already in a

state of balance, whereas the dystopian fixed point is imbalanced.

Figure 4.3: Stability of fixed points X∗ = ±R 1n×n with R = 10 and n = 32. The
system (4.6) is initialised at the fixed point with a small perturbation matrix with

entries εij
iid∼ N (0, 0.001). The numerics indicate that X∗ = −R 1n×n is unstable

and X∗ = R 1n×n is stable, in agreement with analytic results.
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4.1.3 Stability of all balanced fixed points

We first show an alternative proof of stability around the two fixed points X∗ =

±R 1n×n. This provides a natural basis for consideration of the stability of bal-

anced fixed points in general. Recalling the elementwise form of the system is

M(Xij) =
1

n

(
1−

X2
ij

R2

)∑
k∈V

XikXkj, (4.19)

we can vectorise the system, similar to [29] but including diagonal entries corre-

sponding to self-loops. In our symmetric setting we vectorise the upper triangular

component of X row-wise. The resulting vector of length K = n(n+ 1)/2 has the

structure,

X = (X11, . . . , X1n, X22, . . . , X2n, . . . , X(n−1)(n−1), X(n−1)n, Xnn) ∈ RK . (4.20)

Let T be the index set of pairs where (i, j) ∈ T covers the upper triangular

component of X such that |T | = K, the pairs ordered as in X above. Letting

M(Xij) = Mij, in defining entries of the Jacobian J ∈ RK×K below we maintain

the matrix indexing, differentiating with respect toXpq, where (p, q) ∈ T . Diagonal

terms of the Jacobian hence correspond to (i, j) = (p, q).

∂Mij

∂Xpq

=
1

n

∂

∂Xpq

(
1−

X2
ij

R2

)∑
k∈V

XikXkj +
1

n

(
1−

X2
ij

R2

)
∂

∂Xpq

∑
k∈V

XikXkj (4.21)

At the two fixed points, X∗ = ±R 1n×n, the second term in the above equation is

zero and the summation contained in the first term is nR2. The first term is only

non-zero when (i, j) = (p, q),

∂Mij

∂Xpq

∣∣∣
Xij=±R

=

{
∓2R, (i, j) = (p, q)

0, otherwise
. (4.22)

Thus nonzero cases correspond to diagonal entries, hence the Jacobian is

J(±R 1n×n) = ∓2RIK , (4.23)

where IK is the identity matrix. As the diagonal entries are equal to the eigen-

values, X∗ = R 1n×n is stable and X∗ = −R 1n×n is unstable, consistent with our

earlier conclusions.
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We now classify the stability of the fixed points X∗ ∈ B which correspond

to the balanced states of the system, showing that all of them are stable. The

challenge here is in inferring the sign of the summation∑
k∈V

XikXjk, (4.24)

which dictates the sign of the corresponding entry in the Jacobian. First note that

X is symmetric, hence the above summation is equivalent to an inner product of

the rows i and j. We observe that in a balanced state, if vertices i and j belong

to the same faction, then their opinions of others (and themselves) are coherent.

The opposite is true if they belong to separate factions. Hence given the vertices

are members of the factions i ∈ V1 and j ∈ V2, we conclude that if a fixed point is

balanced, then ∑
k∈V

XikXjk =

{
nR2, V1 = V2

−nR2, V1 6= V2
. (4.25)

This is consistent with the Structure Theorem 3. Now note that at a fixed point,

Xij = R if i and j belong to the same faction, i.e. V1 = V2, and Xij = −R
otherwise. Hence the product of Xij and the above sum is positive for all X∗ ∈ B.

Therefore the entries of the Jacobian (4.21) are given by

∂Mij

∂Xpq

∣∣∣
Xij=±R

=

{
−2R, (i, j) = (p, q)

0, otherwise
, ∀ X∗ ∈ B. (4.26)

Hence X∗ is stable for all X∗ ∈ B. This is verified numerically, shown in Figure 4.4.

This is a reasonable result when considered from the context of Lemmas 4 and 5,

where we know if a graph is balanced and the entries are in the appropriate range,

then X will tend towards a fixed point X∗ ∈ B. Hence the conclusion that such

fixed points are stable is justified.

In this section, we investigated an existing model with bounded dynamics (4.6).

We outlined Lemmas 4 and 5 as corrections to propositions made by Wongkaew

et al. [29], outlining the conditions for the bounded dynamics to reach a bal-

anced fixed point. The authors in [29] also prove the stability of two fixed points

corresponding to all-positive or all-negative graphs, but we do better. Here we

generalise our earlier proofs for the stability of X∗ = ±R 1n×n to characterise the
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Figure 4.4: Stability of a balanced-state fixed point, X∗ ∈ B, each entry perturbed

by εij
iid∼ N (0, 0.5). The instability of an imbalanced fixed point is also shown.

stability of all balanced fixed points, showing that they are all stable. We connect

this finding to Lemmas 4 and 5. The generalisation to balanced fixed points is

achieved by our observation that the inner product of rows i and j is negative if

the corresponding vertices belong to different factions, and positive if they belong

to the same faction.

We now utilise these findings for further extensions based on static control and

a multiplex topology. To our knowledge, we present such models in the following

sections as novel contributions.

4.2 Static control model

In this section, we present a control model (4.27) which can steer the graph towards

a desired balanced state. The control is determined by a desired balanced fixed

point, denoted as X∗ = vvT , and parameterised with β ∈ [0, 1]. Ideally β � 1,

the control serving to nudge the system via a small perturbation onto a trajectory

that leads the system to the desired state. The model is given by

Ẋ = C(X;R)�
[
(1− β)F (X) + β(vvT −X)

]
. (4.27)

This has the advantage that the desired end-state (bipolar or utopia) and, more

specifically, the clique to which each vertex belongs, may be prescribed by the

modeller by prescribing v.
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The prescription of the balanced end-state of the graph is achieved by assigning

positive or negative entries to the state vector v ∈ Rn. In the case of a (maximal)

2 cliques in the end state, vertices belonging to the same clique will carry the same

sign in the corresponding entry of v, as illustrated below. The factor
√
R ensures

that X∗ = vvT is a fixed point of the system (4.27).
Faction A
Faction B

...
Faction A

 =⇒ v =
√
R


+1
−1
...

+1

 (4.28)

Figures 4.5-4.8 illustrate that the graph may be steered to bipolar or consensus

states, defined by the target steady-state X∗ = vvT . We define the cut-off time

tc > t∗, chosen arbitrarily once the dynamics reach a steady state.

The key benefit is that our model (4.27) admits prior specification of a bipolar

end state. Previous adaptive control models in [29] involve a different control

mechanism and find (numerically) the optimal control to drive the graph to a

consensus state (3.23). However, the limitation noted by the authors is that there

is no mechanism to steer the graph towards a desired bipolar state. This limitation

is overcome here, and with reasonably low values of the control parameter β - the

subject of investigation in the following section.

4.2.1 Test for β

We now outline a numerical test to determine which values of β result in conver-

gence to the desired state X∗. To quantify how close the final state X(tc) is to the

desired state X∗, it is useful for our purposes to define a similarity measure. For

two matrices A and B, the metric S ∈ [0, 1] is defined as

S(A,B) = 1− 1

2n2R
||A−B||F , (4.29)

where || · ||F denotes the Frobenius matrix norm. We construct this with the

properties S(A,A) = 1 and S(A,−A) = 0.

For each test run, we use a symmetric standard Gaussian initial condition and

a randomly initialised target state, vi =
√
R(2B − 1), B ∼ B(1/2), where B is the

Bernoulli distribution. The convergence with respect to the similarity measure
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Figure 4.5: Plots of the initial condition, desired state defined by random target
vector X∗ = vvT , and end states without and with control. Clearly the controlled
end-state matches X∗. The cut-off time tc > t∗ is chosen arbitrarily once the
dynamics reach a steady state. The associated dynamics are shown in Figure 4.6.
R = 10, β = 0.025, n = 16.

Figure 4.6: Controlled and uncontrolled dynamics for a random desired state.
R = 10, β = 0.025, n = 16.
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Figure 4.7: Plots of the initial condition, desired consensus stateX∗, and end states
without and with control. The steady-state of the controlled model is consensus,
again matching X∗. The associated dynamics are shown in Figure 4.8. R = 10,
β = 0.025, n = 16.

Figure 4.8: Controlled and uncontrolled dynamics for a desired consensus state.
R = 10, β = 0.025, n = 16.
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Figure 4.9: Average similarity S̄ between the controlled end-state Xtc = X(tc) and
the desired state X∗ with respect to the static control variable β, averaged over 10

test runs with X0
iid∼ N (0, 1) (left). The critical control value βc for convergence is

plotted against n−1/2. R = 10.

is shown in Figure 4.9 for various values of n. What we note from Figure 4.9 is

the relatively low values of β for which the desired state is reached, for example

β ≥ 0.035 for a random graph of size n = 32.

We find a dependence on n for n . 256, which is a result of the random

initial conditions used, X0 ∼ N (0, 1). At t = 0, the sum
∑

k∈V XikXkj is normally

distributed and centred on zero by the Central Limit Theorem, hence the deviation

of the sum from zero decreases with
√
n, in which cases the relative influence of

the control is greater. Hence for small n, we expect the influence of the graph

size on the critical control value for which the desired state is reached, βc, to be

proportional to 1/
√
n. This is illustrated in Figure 4.9.

4.2.2 Stability of the control model

We now show that the condition on β for the stability of balanced fixed points,

X∗ ∈ B, is β < R/(R + 2). We define entries of the control model (4.27) as

Ẋij = Dij(X;R,v) = Dij and proceed as in Section 4.1.3. In the case where Xij

matches the desired fixed point X∗ij, the control has no effect, and the correspond-

ing diagonal entry in the Jacobian is −2R(1 − β), stable as before. When such

states do not match, then X∗ij −Xij = ∓2R, and the corresponding entry on the
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diagonal of the Jacobian is

∂Dij

∂Xij

∣∣∣
X∗

ij=±R
= −2R(1− β) + 4β. (4.30)

This is less than zero for all i, j provided β < R/(R + 2), for which the balanced

fixed point is stable. This is a mild condition given our numerical results above,

typically requiring β ∼ 10−2 for the end state to match a random desired state.

We now define our prescribed rank-one matrix X∗ = vvT as a diplomatic

target, which in the context of the initial value problem serves to constantly nudge

opinions or relations towards a specified state. Applying this to the case study of

countries leading to WWI in the paper by Antal et al. [24] and also in comparing it

to the model proposed by Marvel et al. [19] on a dataset harvested from Zachary’s

karate club study [34], we show in both cases that this model correctly classifies

all parties for reasonably low values of the control parameter β.

4.2.3 Case study 1: Alliances in World War I

We apply the models to the example of alliances and enmity between nations in

the period leading up to WWI shown in Figure 2.2. This is given as an empirical

example of international relations tending toward socially balanced states in Antal

et al. [24], shown in Figure 2.2, but it is not used in the analysis of their model. We

use each snapshot up to 1904 as an initial condition, run the control model using

the 1907 Allied and Axis alignments as the diplomatic target, investigating how it

performs versus the uncontrolled model with saturation (4.6) as both models are

initialised closer to the outbreak. Results are shown in Figure 4.10.

We observe that the controlled model leads the graph to the desired state

in every case. The uncontrolled model only achieves the correct classification

for the 1904 initial configuration. Otherwise, the uncontrolled model typically

misclassifies one country. An interesting point of note is that the non-control

model also fails to elicit any relationships for Italy in the first instance, where

Italy is disconnected from the graph. The control model successfully inserts Italy

into the final state, however, which points to its use in modelling the growth

of initially disconnected graphs, where vertices that are disconnected under the

original model would otherwise remain disconnected.
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Figure 4.10: Controlled dynamics of positive (yellow), neutral (green), and neg-
ative (purple) relations between nations preceding WWI. Initial states (far-left
column) are obtained for different years from [24], and the diplomatic target for
the control model is given by the 1907 state of Allied and Axis forces (mid-left).
End states predicted by the original model with saturation (4.6) (mid-right) versus
the control model (4.27) (far-right).
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initial year β

1872 0.119
1882 0.122
1890 0.016
1891 0.029
1904 0.000

Table 4.1: Minimum values of β for which every country is successfully classified
to three decimal places, given initial data at the years specified.

The minimum values of the control parameter for which the model correctly

classifies every nation is given in Table 4.1. Referring to Figure 2.2, we argue that

in the first two instances, a larger value of β is required to achieve the desired

state because there are fewer edges present in the graph, i.e. the initial data is

more sparse, and edges present involve positive relations between Russia and both

Austria-Hungary and Germany, an alliance that does not persist. As the year from

which the model is initialised becomes closer to the outbreak in 1914, we find that

values of β one order of magnitude lower are required to reach the desired state.

From 1904, the original model correctly classifies each party. The difficulty in pre-

dicting the final state from earlier years of course reflects the inherently stochastic

nature of social relations, but it proves reasonably effective when initialising from

later years, in which only low values of β are required to reach the actual state.

4.2.4 Case study 2: Zachary’s karate club

Zachary’s karate club study [34] is a well-known example in network theory, con-

cerning the fission of small groups into two opposing factions. The study follows

the relationships between 34 members as a club split in two due to instructor wage

disagreements. The benefit of the supplied dataset is that it provides information

on the frequency of social interaction between individuals shortly before the fission

and details of which faction-club individuals joined afterwards.

In the study, the frequency of interaction is argued to be linearly dependent on

the strength of relationships and quantified on a scale of discrete values in the range

[0, 8]. For our investigation, this range is scaled to [−1, 1]. Data for the target

state X∗ = vvT and initial state X0 ∈ R34×34 are harvested from the paper [34].
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Numerical solutions to the saturating model without control (4.6) and the static

control system (4.27) for the dynamics and final-state are shown in Figures 4.11

and 4.12 respectively. The desired state is achieved for β = 0.009.

A similar study is performed by Marvel et al. in [19] for the unbounded dy-

namics Ẋ = X2, as in (3.2). The classification of the end states is found here to be

the same for the analogous model including saturation (for R = 10). These models

at best misclassify one individual in the bipolar steady state. However, by adding

a small term that nudges the system towards the desired state as introduced here

in (4.27), the system correctly classifies all members in the final state.

In this section, we presented a novel adaptive control scheme to drive the graph

to any prescribed balanced state. This improves on the limitations of previous

models [29], which are only able to steer the graph to consensus. We derive

a stability criterion for our control model at balanced states, β < R/(R + 2),

considered mild given that the requirement to bring a random initial state to a

target is typically on the order of β ∼ 10−2, found numerically.

The two case studies presented show that a specific bipolar state may be

achieved for low values of the control parameter β. In both cases, we prescribed

the desired state X∗ based on the known final associations of vertices in the graph.

In reality, such states are not known a priori. However, the control parameter may

be tuned such that the final balanced state accounts for the state vector v, but is

not determined by it. Hence, v may be used to encode other non-deterministic in-

fluences, such as expert analysis, histories of relations, known political sentiment,

or knowledge from data mining. In such cases, β may be used to quantify the

modeller’s trust in the knowledge source. This control model may also be applied

to connect initially disconnected graphs, which as we illustrated would otherwise

stay disconnected in uncontrolled settings.
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Figure 4.11: The initial state of relations between club members (far left), followed
by the actual balanced distribution of members following the fission of the club
(mid-left). The steady-state without control (mid-right) misclassifies at least one
individual [19], depending on the linear map used for the initial conditions. The
controlled steady-state (far right) matches the actual result. This is achieved for
a relatively low value of the control parameter, with a lower bound of β = 0.009
to three decimal places.

Figure 4.12: Associated dynamics of relations initialised with data from Zachary’s
karate club study. Here R = 10, n = 34, β = 0.009.
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4.3 Multiplex graphs

Aside from adding a control mechanism, another interesting extension of the dy-

namics is to couple (linearly) the dynamics of multiple layers of a multiplex graph.

For unbounded models, the application to multilayer graphs is not particularly in-

teresting. Once one layer blows up, it dominates the dynamics of the other layers

for all α ∈ (0, 1]. The result, which is verified computationally, is that the final

state of every layer is identical. However, this is not the case when the model

with saturation (4.6) is generalised to a multiplex topology. For a graph with two

layers, L = 2,

Ẋ1 = (1− α)M(X1) + αM(X2), X1(0) = X0(1),

Ẋ2 = (1− α)M(X2) + αM(X1), X2(0) = X0(2),
(4.31)

there is a critical value of the coupling parameter α, above which both layers tend

to the same balanced state and below which the layers tend to different states.

The dynamics and end-states are illustrated for a range of α in Figure 4.13. Again

using the similarity measure, S(X1, X2), the equivalence of the final states for

α & 0.35 given random initial conditions is shown in Figure 4.14. We also provide

a local analysis for the nine fixed points of the associated reduced system in R2

when considering constant initial conditions, X1(0), X2(0) ∈ C. This is outlined in

Appendix A. As we characterise the relevant fixed points for the full system (4.31),

we do not include the analysis of the reduced system here.

4.3.1 Stability of utopian and dystopian states

We have already proven the stability of the system around the two fixed points

X∗ = ±R 1n×n for a single layer, L = 1, in Section 4.1.3. This provides a basis

for consideration of the multiplex case. In the L = 2 multiplex case, it is again

helpful to consider the elementwise form of (4.31),

Ẋij(1) = (1− α)
1

n

(
1−

X2
ij(1)

R2

)∑
k∈V

Xik(1)Xkj(1) + α
1

n

(
1−

X2
ij(2)

R2

)∑
k∈V

Xik(2)Xkj(2),

Ẋij(2) = (1− α)
1

n

(
1−

X2
ij(2)

R2

)∑
k∈V

Xik(2)Xkj(2) + α
1

n

(
1−

X2
ij(1)

R2

)∑
k∈V

Xik(1)Xkj(1).

(4.32)
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Figure 4.13: Dynamics and end-states of two layers, with respect to the coupling
parameter α. Both layers tend to the same state for α = 0.35, agreeing with
the numerical test in Figure 4.14. At higher values of α the dynamics are more
strongly coupled and begin to show oscillatory behaviour, overshooting ±R. Both
initial conditions are iid and drawn from a standard normal distribution N (0, 1).
R = 10 and n = 16.
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Figure 4.14: Equivalence of multiplex end states, averaged over 25 tests, with
respect to α, quantified by the similarity measure (4.29). R = 10, n = 16.

We proceed as in Section 4.1.3. Vectorising the entire system and taking the partial

derivative with respect to (X(1),X(2)) ∈ R2K results in the Jacobian J ∈ R2K×2K .

The entries are evaluated at the fixed points X∗(1) = X∗(2) = ±R 1n×n, resulting in

the following block Jacobian matrix, denoted J± for convenience,

J± = ∓2R

(
(1− α)IK αIK
αIK (1− α)IK

)
. (4.33)

We use the following identity for a block matrix [35],∣∣∣∣A B
C D

∣∣∣∣ = |A||D − CA−1B|. (4.34)

Note that the block A must be invertible, hence we assert λ 6= ∓2R(1 − α), and

solve the characteristic polynomial for the eigenvalues,

|J± − λI2K | = 0, (4.35)

which yields the spectrum of J±, given by,

λ ∈ {∓2R(1− 2α), ∓2R}, α 6= 0. (4.36)

The value α = 0 is neglected as it is the only case where λ 6= ∓2R(1 − α) is not

satisfied. Hence, for 0 < α < 1/2, the fixed point X∗(1) = X∗(2) = R 1n×n is stable

and X∗(1) = X∗(2) = −R 1n×n is unstable. A bifurcation occurs at α = 1/2 and

neither fixed point is stable for α > 1/2.
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4.3.2 Stability of all balanced fixed points

We now characterise the stability of all of the balanced fixed points of the system,

showing that they are stable for a < 1/2. In such cases we show that it is not

necessary for each graph to be in the same balanced state, i.e. Xij(1) can belong

to a different faction than Xij(2), provided each layer of the fixed point (X∗(1), X
∗
(2))

is balanced.

As in section 4.1.3, we are interested in inferring the sign of the sums contained

in (4.32), which dictate the signs of the corresponding entries in the Jacobian. We

invoke our previous observation that in balanced graphs this sum equals nR2 if i

and j belong to the same faction and −nR2 if they belong to different factions (i.e.

Xij = R or Xij = −R at the fixed point respectively). This is now a function of

the layer, l, hence we define the observation using a function φ(l)(i, j) to represent

the sign of Xij(l) so we can express the summation as∑
k∈V

Xik(l)Xkj(l) = nR2φ(l)(i, j), φ(l)(i, j) =

{
+1, Xij(l) > 0

−1, Xij(l) < 0
. (4.37)

Proceeding as before, noting that only the entries on the diagonal (p, q) = (i, j) of

each block in the Jacobian are nonzero, the diagonal entries are given by

∂Mij(1)

∂Xij(1)

∣∣∣
Xij=±R

= −2R(1− α), (4.38a)

∂Mij(1)

∂Xij(2)

∣∣∣
Xij=±R

= ∓Rφ2(i, j) = −2Rαφ(1)(i, j)φ(2)(i, j), (4.38b)

∂Mij(2)

∂Xij(1)

∣∣∣
Xij=±R

= ∓Rφ1(i, j) = −2Rαφ(2)(i, j)φ(1)(i, j), (4.38c)

∂Mij(2)

∂Xij(2)

∣∣∣
Xij=±R

= −2R(1− α). (4.38d)

Note in (4.38b) and (4.38c) the additional φ accounts for the sign of the entry Xij

and hence the associated ∓ sign, allowing us to express the Jacobian as

J = −2R

(
(1− α)IK αΦ(1)Φ(2)

αΦ(1)Φ(2) (1− α)IK .

)
, (4.39)

In essence the matrix Φ(l) ∈ {−1, 0, 1}K×K encodes the sign of each vertex (i, j) ∈
T along the diagonal in a given layer,

Φ(l) = diag(φ(l)(i, j)) = diag(sign(X(l))), l = 1, 2. (4.40)
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Again we use the identity (4.34) to calculate the characteristic polynomial for

λ 6= −2R(1− α). Dropping the factor of −2R, the sign matrices cancel yielding,∣∣∣∣(1− α− λ)IK αΦ(1)Φ(2)

αΦ(1)Φ(2) (1− α− λ)IK

∣∣∣∣ = λ2 − 2(1− α)λ+ (1− 2α) = 0 (4.41)

Leading to the eigenvalues (on inclusion of the factor of −2R),

λ ∈ {−2R(1− 2α),−2R}, α 6= 0. (4.42)

Hence for 0 < α < 1/2 if both layers constituting a fixed point are balanced, the

fixed point is stable. It is not necessary that the layers are balanced identically,

i.e. that X∗(1) ≡ X∗(2), as the sign difference cancels in evaluating the eigenvalues.

This result is consistent with our previous proof of the stability of the utopian

state. There is a bifurcation at α = 1/2, above which the balanced fixed points

are not stable.

In our setting, the layers of a multiplex graph may represent different planes of

social interaction between entities, for example individuals may differ in their po-

litical orientation depending on the topic of debate, or the state of affairs between

nations may differ depending on the subject, e.g. trade, migration, peace treaties,

etc. We would expect the state of one layer to be influenced by that of others, but

not more so than that of itself. Hence, we argue, the bifurcation at α = 1/2 and

the associated instabilities of balanced states above this value are not relevant to

our context, although it may prove an interesting topic for further work.

In this section, we discussed the application of bounded dynamics to multiplex

graphs. In the L = 2 case, we show that the dynamics are stable at fixed points

provided each layer is in a state of balance, and that it is not necessary for layers to

be in the same state of balance in order for the fixed point to be stable. Indeed for

low values of α, the dynamics of both layers tend towards different balanced states.

From a social perspective, this accounts for cognitive dissonance: individuals may

prescribe to different ideologies depending on the topic, or countries might choose

different sides depending on the diplomatic context. We can also increase the

coupling between layers such both do tend towards the same balanced state, our

numerical results showing that this occurs for α & 0.3.
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Chapter 5

Conclusion

In this dissertation, we provided an overview of the socio-psychological origins

of balance in social networks and its subsequent formalism within graph theory.

We then motivated the use of models in continuous time to drive an initially

imbalanced graph to a state of balance. This involved first exploring existing

models which typically contain finite-time singularities, reflecting how once a graph

reaches a balanced state, opinions diverge. This is however unrealistic, hence we

focused on bounded models, parameterised with a saturation value R. We used

a model which includes reflexive relationships and studied the stability of the

associated fixed points and convergence to a balanced state. To our knowledge, this

marked the beginning of the novel contributions of the dissertation. We outlined

two model extensions. The first is a static control model, which serves to nudge

the system onto an orbit that reaches a desired balanced state, X∗. This model

was applied to two case studies: the alliance and opposition between nations in

the years preceding WWI; and group fission in a well-known karate club study.

In both cases, the model successfully classified the members of each party in the

final state. The second extension investigated coupled dynamics between layers of

multiplex graphs. We investigated the stability of the system and the values of the

coupling parameter α for which the layers tend to identical balanced states. For

α < 1/2 we found that the layers can tend to different balanced steady states and

be stable under the associated dynamics, and we interpreted this in the context of

social networks.
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5.1 Limitations

There are several limitations to the general framework presented in this disserta-

tion. First, there are limitations to the Heider balance model and the associated

dynamics, in that it does not account for the inherent unpredictability of relations

between social individuals. We see this in the difficulty the control model has

in predicting the Russia-Hungary lapse in the WWI case study. Heider balance

theory also only accounts for ‘bipartisan fission’, applicable to settings where a

group undergoes fission into maximally two factions. This is sufficient in appli-

cations such as Zachary’s karate club study, but is not always observed in social

settings where human relations are typically stochastic and less consistent [36].

Other paradigms admit notions of weak structural balance - “Machiavellian” con-

figurations [37] in which a triad with three negative edges is considered balanced,

allowing for more than two factions to constitute a balanced graph.

In the multiplex model, if one layer is initialised with negative relations, it may

force both layers to a consensus state. An example of this is plotted in Figure A.7.

Applied to social settings, this is an artefact of the dynamics that seems unrealistic

and should be investigated in further work.

5.2 Further work

We finish by outlining a few natural progressions from the current work. For the

control model, it would be interesting to investigate the performance of this model

without a prior knowledge of the desired state. Thus a key challenge would be

how to prescribe the diplomatic target vector. Some approaches we suggested are

data mining or expert analysis, the control parameter β quantifying the modeller’s

trust in the source. Another avenue of exploration is optimal control, where a cost

functional may be defined for a dynamic control parameter varying in time, β(t).

A numerical example is outlined in [29]. Another option is to data-drive the control

parameter to track the dynamics of real social interactions.

Another feasible extension would be to consider L > 2 layers in a richer multi-

plex graph topology, investigating the interplay between interlayer dynamics and

intralayer dynamics.
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It would be interesting to adopt a general stochastic model, reflecting the nature

of social interactions. A simple extension would be to include a multiplicative

stochastic variable, for example,

dX = X2 dt+
√
σX2 dW,

where W is a Weiner process. This approach would be in the spirit of stochastic

variations of flocking models, e.g. the stochastic Cucker-Smale model, which is

briefly suggested as an extension to the control system in Wongkaew [29]. Such

a model could be used to investigate how robust the dynamics or control are to

noise.
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Appendix A

Reduced multiplex dynamics

To investigate the stability of the fixed points of the problem (4.31), we consider

simplified dynamics for n = 1. For x1, x2 ∈ R and R = 1, we have

ẋ1 = (1− α)(1− x21)x21 + α(1− x22)x22
ẋ2 = (1− α)(1− x22)x22 + α(1− x21)x21.

(A.1)

Letting x = (x1, x2)
T , the associated set of nine fixed points for the system are

x∗ = {(0, 0), (±1, 0), (0,±1), (±1,±1)}.

Each of these fixed points are in the domain Ω ≡ [−1, 1] × [−1, 1], the extent

determined by R = 1. The Jacobian, taken with respect to x, is given by

J(x;α) = 2

(
(1− α)(1− 2x21)x1 α(1− 2x2)x2
α(1− 2x1)x1 (1− α)(1− 2x22)x2

)
. (A.2)

The phase planes of the n = 1 system are simulated for a range of values of

α in Figure A.1. We refer the reader to Appendix B for numerical results of the

local stability around each fixed point.

The eigenvalues and eigenvectors of (A.2) for each of the nine fixed points are

given in Table A.1. The stability of hyperbolic fixed points, which satisfy

R(λ) 6= 0, ∀λ ∈ Spec(J(x∗;α)),

is completely determined by linearisation of the field around each fixed point [38].

The set of hyperbolic fixed points is given by H. The stability of x∗ ∈ H is hence

given by the following theorem, from [39].
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x∗ J(x∗;α) λ

(0,0)

(
0 0
0 0

)
{0, 0}

(1,0) 2

(
−(1− α) 0
−α 0

)
{0,−2(1− α)}

(-1,0) 2

(
(1− α) 0
α 0

)
{0, 2(1− α)}

(0,1) 2

(
0 −α
0 −(1− α)

)
{0,−2(1− α)}

(0,-1) 2

(
0 α
0 (1− α)

)
{0, 2(1− α)}

(-1,1) 2

(
1− α −α
α −(1− α)

)
{−2
√

1− 2α, 2
√

1− 2α}

(1,-1) 2

(
−(1− α) α
−α 1− α

)
{−2
√

1− 2α, 2
√

1− 2α}

(-1,-1) 2

(
1− α α
α 1− α

)
{2(1− 2α), 2}

(1,1) 2

(
−(1− α) −α
−α −(1− α)

)
{−2,−2(1− 2α)}

Table A.1: Eigenvalues of the Jacobian evaluated at the nine fixed points of the
system (A.1). The last four rows, corresponding to the fixed points at the corners
of Ω, undergo a bifurcation at α = 1/2.
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Figure A.1: Phase portrait of the system (A.3), with fixed points shown in red. A
bifurcation occurs at α = 1/2. Phase lines are initialised along the blue line, with
trajectories shown in black.

Theorem 6. For all x∗ ∈ H, if, for a given α, R(λ) < 0, ∀λ ∈ Spec(J(x∗;α)),

then x∗ is asymptotically stable. Otherwise there exists a λ such that R(λ) >

0, λ ∈ Spec(J(x∗;α)), and x∗ is unstable.

From Table A.1, for α < 1/2, there are four hyperbolic fixed points

H = {(±1,±1)},

of which only x∗ = (1, 1) is stable. The other three contain an unstable linear

subspace (which is tangent to a one-dimensional unstable manifold) hence, by

Theorem 6, they are unstable fixed points. At α = 1/2 a bifurcation occurs at every

fixed point in H. At the equilibria ±(1, 1), the eigenvalues pass through zero, a

bifurcation being implied by a change in stability of the associated linear subspaces.

A more complex bifurcation occurs at ±(1,−1). If viewed in the complex plane,

the eigenvalues approach each other on the real line, collide, and become complex

conjugate. Such a bifurcation is known as a saddle-centre bifurcation [40]. For

α ≥ 1/2 the set of hyperbolic fixed points is empty, H = ∅.

A.1 Classification of fixed points with singular

Jacobian

In the case of the five non-hyperbolic fixed points for α < 1/2, or seven for α > 1/2,

the Jacobian at each fixed point has at least one zero eigenvalue with an associated
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centre linear subspace, tangent to a centre manifold, W c [38]. Both (−1, 0) and

(0,−1) have an unstable subspace for α ∈ [0, 1)1, thus we can conclude in such

cases that these equilibria are unstable. In the case of one zero eigenvalue and

one negative eigenvalue, the local dynamics around x∗ /∈ H are governed by the

reduced dynamics on the centre manifold.

For the equilibria (1, 0) and (0, 1) we can analyse the dynamics on the centre

manifold. This in essence involves projecting the local dynamics onto the centre

manifold, reducing the number of state variables of the system, then extending the

centre manifold by one dimension to include the bifurcation parameter α [41]. We

note that the system dynamics are symmetric about x1 = x2, thus it is sufficient to

characterise the stability of one of the above points. We leave this characterisation

to further work, if necessary.

A.1.1 Degenerate centre

In the case of the quadratic system (A.1) with degenerate linear terms, such as

(0, 0), one approach is to investigate the dynamics via Normal Form analysis, in

which non-resonant terms close to a fixed point are removed by a near-identity

transformation [41]. However, a more straightforward analysis is available if we

take advantage of the symmetry of the problem. This is the approach taken below.

We may classify the local stability of the point (0, 0) by noting it lies on the

line x1 = x2, which is an invariant set under the flow. Hence we may reduce the

dimension of the problem to ẋ = f(x) ∈ R, defined as

ẋ = f(x) = x2(1− x2), (A.3)

and study the dynamics around the fixed points x∗ = {−1, 0, 1}. The plot of (A.3)

is shown in Figure A.2. In the one dimensional case, the Jacobian is identical to the

derivative, Dxf(x) = 2x(1 − 2x2), from which we can see that Dxf(−1) > 0 and

Dxf(1) < 0 hence the point x∗ = −1 is unstable and the point x∗ = 1 is stable

along the invariant x1 = x2, in agreement with our earlier analysis. Although

Dxf(0) = 0, we can observe the behaviour of f(x) in Figure A.2 around x∗ = 0

to determine the stability of the fixed point. As Dxf(ε) > 0 for ε� 1, we deduce

that x∗ = 0 is unstable and hence, by symmetry, x∗ = (0, 0) is unstable ∀α.

1We address the local stability for α = 1 in later sections.

57



Figure A.2: Plot of the reduced system (A.3).

A.1.2 Saddle-centre bifurcation

For the points ±(1,−1) eigenvalues of the Jacobian are given by

λ1,2 = ±2
√

1− 2α, α ∈ [0, 1], (A.4)

hence for α < 1/2, λ1,2 are real, non-zero, and distinct. As one of them is positive,

these equilibria are unstable in this range of α, as proven earlier. Both eigenval-

ues pass through zero at α = 1/2 and become complex conjugate for α > 1/2,

suggesting the presence of periodic behaviour, however drawing conclusions of the

stability of such is non-trivial. Numerical simulations of the global behaviour are

shown in Figure A.1, with a bifurcation at α = 1/2. Numerical solutions indicate

the presence of limit cycles for α = 1. Refer to Figure B.1 in Appendix B for a

local phase portrait around (1,−1).

Another option for identifying the stability of such points is to find a first

integral for the system, within level sets of which orbits are confined. However,

using Mathematica we found that no first integral polynomial exists in general, up

to degree 20. This is not the case when α = {0, 1} however, which we explore in

the following sections.

A.2 First integral for α = 1

Representing the reduced system as

ẋ1 = (1− α)x21(1− x21) + αx22(1− x22),

ẋ2 = (1− α)x22(1− x22) + αx21(1− x21),
(A.5)
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in the case where α = 1 we can find a first integral,

dx1
dx2

=
f(x2)

f(x1)∫
f(x1) dx1 =

∫
f(x2) dx2 + c

1

3
x31 −

1

5
x51 =

1

3
x32 −

1

5
x52 + c (A.6)

Hence we can plot level sets of the function

V (x1, x2) =
1

3
x31 −

1

5
x51 −

1

3
x32 +

1

5
x52, (A.7)

and compare them to the numerical phase portrait, as in Figure A.3.

Figure A.3: Numerical phase portrait of the system (A.3) with α = 1 (left) and
level sets of the function (A.7) (right).

Every orbit is contained in some level set of V (x1, x2), defining an invariant of

the flow of (A.1). The level sets V = {0,± 2
15
,± 4

15
} contain fixed points, while all

other level sets containing points in the domain Ω = [−1, 1]× [−1, 1] are unions of

periodic orbits. This is shown in Figure A.4, which compares the numerical phase

lines of the system (A.1) and level sets of the function (A.7). There is no need to

appeal to, say, the Poincaré-Bendixson Theorem [38] here, as all of the information

about the orbits (not just their convergence in the limit) may be read from V .

The full system (4.31) contains linear combinations of vertices, which beget

more complex dynamics, however we can apply conclusions from the n = 1 system
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Figure A.4: Periodic dynamics for α = 1. Plot of the level set of V (x1, x2) contain-
ing (−0.5, 0.5) (left), and the associated dynamics of the full system (4.31) with
initial conditions X1(0) = −0.5 1n×n and X2(0) = 0.5 1n×n (right).

to the full system in the case of the initial conditions X1(0) = x0(1) 1n×n and

X2(0) = x0(2) 1n×n. Given R = 1, the only difference is that the full system

dynamics move faster by a factor of n, but the orbits are identical, as shown in

Figure A.4.

A.3 First integral for α = 0

We apply the same approach for α = 0, yielding the first integral

V (x1, x2) = x−11 − x−12 +
1

2
log

(
|x2 + 1||1− x1|
|1− x2||x1 + 1|

)
, x1, x2 /∈ {−1, 0, 1}, (A.8)

for which the level sets are plotted alongside the numerical phase portrait in Fig-

ure A.5. Note also that the lines x1 = γ and x2 = γ are invariant sets for

γ ∈ {−1, 0, 1}. Orbits in the domain Ω which do not start on these lines tend

towards the top-right fixed point of the quadrant in which they begin.

For α = 1/2, the first integral is given by x1 − x2 = c, for some constant c,

which can be observed from Figure A.1.
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Figure A.5: Numerical phase portrait of the system (A.3) with α = 0 (left). The
black phase lines are initialised just inside the domain of interest along the lines
L1 := (−0.99, t) and L2 := (t,−0.99) for t ∈ [−0.99, 0.99]. The right plot shows
level sets of the function (A.8).

A.4 Regions of convergence

A necessary condition for the α = 0 orbits inside Ω, shown in Figure A.5, is that

the set of fixed points in the first quadrant Q1 = {(0, 0), (0, 1), (1, 0), (1, 1)} is an

asymptotic set for orbits beginning in any region S ⊂ Ω. This applies in general

for 0 ≤ α < 1/2, where Figure A.6 plots each orbit associated to its ω-limit point

by colour. It is worth noting from Figure A.6 that there exists a region G in the

third quadrant from which orbits will tend towards (1, 1), plotted in green. The

size of this region increases from zero with 0 ≤ α < 1/2. We view this behaviour

as a limitation of the model when applied to multiplex social networks. The reason

is that we are associating two coupled layers of constant negative relations, and

have both graphs tend to consensus states, which does not seem realistic. It is in

fact observed for some non-constant matrices with normally distributed negative

initial conditions. If two matrices are drawn from normal distributions with means

µ1, µ2 < 0, in the decoupled state, both layers tend to a bipolar state, but when

coupled they may both tend to consensus, as in Figure A.7.
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Figure A.6: Orbits beginning in the region S ⊂ Ω, each associated to its ω-limit
point by colour: red for (0, 1), (1, 0), green for (1, 1), and black for (0, 0). Note
the small overshoot of the fixed point for larger values of α, indicating oscillatory
behaviour.

62



Figure A.7: Multiplex dynamics with initial conditions drawn from a normal distri-
bution with µ1 = −0.5 and µ = 0 for X1(0) and X2(0) respectively. Independently,
both layers tend to bipolar states of balance (top row), but when coupled, both
tend to consensus. The small overshoot of the fixed point in the bottom right
replicates similar behaviour of the n = 1 trajectories in Figure A.6.
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Appendix B

Local stability of multiplex fixed
points for n = 1

Figures B.1 and B.2 on the following pages are results of the numerical study of

the local stability of fixed points in the multiplex system (A.3).
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Figure B.1: Local phase plots around origin and corner fixed points.
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Figure B.2: Local phase plots around other fixed points.
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