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Abstract

This dissertation explores the formation of social structures on signed
graphs from the perspective of dynamical systems. We outline what it
means for a graph of relations to be balanced, motivated by concepts
in social psychology. We investigate and compare existing models of
opinion dynamics through gossiping mechanisms, and explore how they
affect the structure of social groups. Such dynamics tend to diverge,
hence we investigate known models that bound the opinions to a pre-
scribed range. We then present new convergence proofs and prove the

stability of different social states under such models.

We outline a novel control model, which nudges the opinions towards a
social configuration prescribed by a state vector, termed the diplomatic
target. We apply this model to two case studies: the alliances and
enmity of nations in the period preceding WWI; and Zachary’s karate
club study, a well-known example of group fission in network theory.
Our model correctly classifies the final allegiances in both cases. We
also introduce and investigate the bifurcating dynamics on two coupled
graphs, known as a multiplex graph, and prove the stability of various
fixed points of the associated system. We find that coupled graphs can
tend toward separate states of balance and still be stable under the

presented dynamics, interpreting this in the context of social networks.
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Chapter 1

Introduction

How might we model the dynamics of friendship and enmity? In this dissertation,
we investigate the social structures which emerge from continuous-time dynamic
models, and their associated stability, control, and application to more complex
graph topologies. The key concept underpinning such models is that of the signed
opinion graph, where signed edges quantify the strength of positive or negative re-
lations between vertices representing social entities, encoded in the associated en-
tries of a signed matrix X. The dynamics are represented as initial value problems
in X, which in their basic form consist of simple matrix operations representing a
gossiping mechanism, each vertex updating its opinion of another by considering
all of the relative opinions in the graph.

The relation between three simply connected entities, known as a triad, is
considered socially balanced if there is an odd number of positive opinions between
them. In a fully connected graph, a necessary and sufficient condition for the entire
graph to be socially balanced is if all of the constituent triads are balanced [1].
In such a case, the graph can be partitioned into two feuding factions: mutually
exclusive cliques within which relations are positive, and between which relations
are negative.

The overall aims of this dissertation are: to analyse how opinion dynamics drive
initially imbalanced graphs to balanced states, along with their associated stability
and convergence criteria; to present and test control mechanisms to drive graphs to
a desired state; and to generalise the dynamics to more complex multiplex graph

topologies.



Throughout the work we seek to interpret our mathematical analysis through
the lens of social relations: graph edges represent opinions; dynamics represent
the effects of communication and gossiping; control represents biases, historical
allegiances, or known opinion influences; and layers of multiplex graphs represent
different arenas of social interaction between the same entities.

The layout of the dissertation is as follows. In Chapter 2 we introduce the socio-
psychological basis and subsequent graph-theoretic formulation of social balance
theory. We outline the theorems and associated proofs which ground the intuition
behind the ‘balancing effect’ of dynamical models of opinion networks and motivate
the use of models in continuous time. We then explore existing continuous-time
models in Chapter 3, their associated conditions for bringing an initial random
graph to a state of balance, and how the dynamics may be bounded to prevent
opinions diverging. We consider an alternative model on directed graphs. Chap-
ter 4 contains the bulk of the novel contributions of the dissertation. We out-
line proofs of convergence and the stability of balanced states for a non-diverging
model. We present a control mechanism that leads the graph to a desired state,
termed the diplomatic target. Two cases are presented, applying the model to in-
ternational relations preceding WWI and to a study of social fission of members in
a karate club. We then generalise the bounded dynamics to multiplex graphs, and
analyse the associated convergence and stability of balanced states. We outline

natural extensions to the work and conclude in Chapter 5.



Chapter 2

Background

In complex systems science, there are three broad approaches used to model friend-
ship, enmity, and conflict.

The first concerns statistical modelling, which dates back to the 1940s where
Richardson [2] showed that the distribution of fatalities of conflicts follow power
laws. Examples of more modern approaches include data-mining of news sources
to gauge political sentiment [3], or modelling incidents of acts of terror as self-
exciting Hawkes processes, such as those during the Troubles [4]. Cervantes [5] used
a decision-tree algorithm to predict conflict between nations based on data such
as flights, migration, and visa requirements. These approaches are powerful, but
data-constrained, and lack the deeper understanding of dynamic mechanisms at
play, the models sometimes lacking explainability or providing any causal inference.

Another approach is via agent-based modelling (ABM), involving the simula-
tion of a large number of interacting agents following simple instructions, allowing
us to investigate claims and causal mechanisms such as the distribution of political
responsibility, gang rivalry [6], ethnic and culturally-motivated differentiation and
violence [7], and the role of warfare in the emergence of large societies [8]. The
main drawback of ABM however is that it is limited by complexity for which, in
large-scale systems, the associated algorithms quickly become intractable.

The final approach is in dynamic modelling of interactions. Dynamical models
of the relations between entities in a network may be prescribed by the rules of
social balance, spatial distribution, or other indicators such as military imbalances

and well-being metrics [9]. This is the general approach taken in this disserta-



tion, as it is interesting mathematically and does not rely on a replete dataset,
computational tractability, data-model fits, or much of the work involved in data
mining.

This chapter outlines requisite knowledge from network theory, details Heider’s
theory of social balance and its interpretation in the context of a signed graph,

and motivates the dynamical models of opinion formation within such graphs.

2.1 Definitions from graph theory

We outline some background notions from network theory that are used in the
course of the dissertation. Many of the definitions are available in Newman [10].
A linear graph represents pairwise relations between n € N members or agents,
denoted by G(V, E) where V is a finite set of vertices or nodes V- = {1,...,n} and
E ={(i,j)|i,j € V'} a prescribed list of (possibly ordered) pairs of vertices repre-
senting edges. Neighbouring vertices ¢ and j are incident to the edge (i,j). The
cardinality of V' is the graph size, |V| = n. Computationally, edge lists are stored
for representing a graph structure, but another useful means for representation is

via an adjacency matrix A € {0,1}"*", whose entries are given by,

A, = {1, if (i,j) € E

0, otherwise.

Entries A;; represent self-loops or reflexive relationships. The presence or absence
of such relations is acknowledged in different models presented in the course of
this dissertation. Inclusion of a negative relation, such that A € {—1,0,1}"*",
constitutes a signed graph.

In directed graphs, the orientation of an edge between two vertices is specified
in the order by which the pair is given in FE, (4, ) indicating an edge from ¢ to j.
Correspondingly, adjacency matrices of directed graphs are typically asymmetric.
Traditionally the A;; entry represents an edge from j to i [10], yet much of the
literature relevant to this dissertation specifies the A;; entry as an edge from i to
J, hence we follow the latter convention.

In regular linear graphs, edges are treated as a binary specification of the

relation between two vertices. To allow for a varying strength of relations, weighted



graphs are used. In a weighted graph, G(V,w), a function w generally quantifies a
non-negative edge-weight between two vertices. In this dissertation, however, we
are concerned with weights that vary over the entire real line, w : V. x V — R
instantiating G(V,w) as a signed weighted graph. The idea is that the inclusion of
negative weights allows for the specification of both positive and negative social
relations between vertices representing social entities. In the case where w is
symimetric,
w(i,j) = w(j,i), VijeV,

and G is undirected. The signed weighted adjacency matrix is denoted as X €
R™*" with entries

Xij :w(iaj)-

A sequence of vy, . . ., vp, Up41 neighbouring vertices is known as a path of length
p. In the case where v; = v, the path is a cycle. The vertices comprising a cycle
of length three form a triad. In a signed graph, the sign of a cycle is the product
of the signs of the vertices that make up the cycle.

The degree of a vertex is the number of edges incident to that vertex. The
graph G is considered fully connected or complete when every vertex is connected
to every other vertex in G. In the case where w(i,j) = 0 for many pairs of
vertices, i.e. |E| < |V, the graph and adjacency matrix X are considered sparse.
An example of such is a triangular lattice graph with large |V'| where, in the case
of periodic boundary conditions, every vertex has degree 6, independent of |V,
which we refer to in later sections.

Multiplex graphs are representations of multilayer networks where the node-
set V' is identical across each layer [11]. In cases where the node-set across each
network is different, the graph is referred to as multilayer [5]. For a multiplex
network with n vertices in each [ = 1,..., L layers, the associated adjacency matrix
for a given layer [ € L is given by X; € R"". The parentheses are omitted in
cases where the meaning is unambiguous.

When representing social networks, a number of notions relating to the struc-
ture and dynamics of signed graphs may be defined, chiefly the notions of balanced
relations and balanced graphs. To motivate these, we first outline some of the un-

derlying socio-psychological concepts of Heider and the gap to graph theory that



was bridged by Harary and Cartwright [1]. Beyond social systems, notions of

balance and frustration are observed in Ising’s model of magnetic spin-glasses [12].

2.2 Heider’s Theory of Social Balance

The notions of social balance date back to Heider’s theory of attitudes and cog-
nitive organisation in social systems [13]. Here, the balance of subjective social
relations between entities is considered based on ‘attitudes’ L, i.e. liking and dis-
liking, and ‘cognitive units’ U such as possession, belonging, and proximity. A
balanced state is defined between two entities if the relation between them is posi-
tive or negative with respect to all meanings of L and U. In a set of three entities,
also known as a triad, a balanced state exists when all relations are positive, or
two are negative and one is positive. Heider’s concept of relations tending towards
such balanced states is driven most typically by communication between entities.

Newcomb [14] develops a more objective theory (in the sense of not stating
internal states of entities) based on interpersonal communication, where the rela-
tions between entities may be inferred based on how they exchange information.
Newcomb’s notion of relations which “strain towards symmetry” is applied to
studies on attraction and group homophily, concluding that entities will continue
or discontinue their association to increase attraction and perceived symmetry,
reflecting Heider’s more general theory of “tendency towards balance”.

The common denominator of both theories is that communication between
entities is the mechanism by which social groups move towards states of balance.

This is the idea we keep in mind when investigating various dynamical models.

2.3 Harary-Cartwright formulation

Cartwright and Harary propose a generalisation of Heider’s social balance from a
graph-theoretic perspective [1]. Given that the sign of a cycle or path is the product
of the signs of the constituent edges, a cycle with a positive sign is considered
balanced. This leads to the following theorem by Harary-Cartwright defining a
balanced graph, the proofs for which are outlined in [15].



Theorem 1. A signed graph G is balanced if and only if the sign of every cycle

in G is positive.

An equivalent definition relating to the sign of any given path between two

points is given by the following theorem.

Theorem 2. A signed graph is balanced if and only if every path between each

pair of distinct vertices has the same sign.

From a computational perspective, Theorem 2 is not very interesting, as the
cost of checking the sign of every path between every distinct pair of vertices,
O(n®) [16], is equivalent to checking the balance of every cycle in the graph as
per Theorem 1. What is more relevant is the interpretation of how influence is
exerted between entities in a balanced graph G. If we consider the sign of an edge
denoting a positive or negative influence, the influence of vertex A on vertex B
will be the same no matter what path in G the influence passes from A to B.

Some imbalanced graphs may be closer to balance than others. The coherence
of influence exerted on an individual is thus a function of how close the graph is
to balance. This is quantified via the degree of balance of a graph, defined as the
ratio of positive cycles to total cycles. If C'(G) and C*(G) are the number of cycles

and positive cycles, respectively, the degree of balance of G is

_ C7(G)
N ER

b(@)

Note that b(G) depends on the structure of the graph, and can only take
discrete values. For instance, a graph consisting of a single imbalanced triad has
b(G) = 0. Hence, as advised by Harary-Cartwright, any interpretation of a specific
value b(G) should account for the distribution of b(G), determined by the structure
of G.

A balanced graph exhibits an interesting property where it may be partitioned
into two mutually exclusive consortia or factions, where relations are positive
within factions and negative between factions. The Structure Theorem [15] for-
malises this notion, which is also referred to as social mitosis [17]. Note that one
faction may have size zero, in which case the entire graph is in a state of consensus

or ‘utopia’, otherwise the state is termed bipolar.
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Theorem 3 (Structure Theorem). A fully connected signed graph, G, is balanced
if and only if its vertices can be partitioned into two cliques, Vi and Vs, within each

all edges are positive and between each all edges are negative.

Proof.

Necessity. Let Ay be any vertex of G, where V] is the set of A; and all vertices
positively adjacent to A;, and V5 the set of vertices negatively adjacent to A;. Then
ViNnVy, = @. In Vj, any two distinct points By and (] are positively adjacent.
If either B; or (4 are A; then this is true by construction, otherwise the cycle
A1 B;C contains positive edges A1 B; and A,C;. For a balanced graph this cycle
is balanced, hence B;C7 must also be positive. For vertices By € V5, Cy € Vj
the edge ByCy must be positive for the cycle Ay ByCy to be positive, similarly for
By € Vi, Cy € Vs, the edge A1 B; must be positive for A;B;Cs to be positive.

Sufficiency. Assuming the graph may be arranged into two opposing cliques as
stated in the theorem, every cycle in G contains an even number of negative edges
between cliques V; and V5. Hence every cycle in G is positive and by definition G
is balanced. O

The proof of necessity relies on the fact that triads (cycles of length three) are
balanced if they contain two or zero negative edges.
A result of the structure theorem is that the associated adjacency matrix of a

balanced graph will have some permutation of the following block sign structure,

= () o (E7) eme

The sign structure of X may be easily permuted and displayed to check if the
above sign structure holds. From a computational perspective, this is useful in our
context as a visual confirmation of social balance.

The Structure Theorem may be interpreted from a perspective of influence ex-
ertion. Given two cliques obeying the structure theorem (thus instantiating a bal-
anced graph), we find the exertion of influence will “produce homogeneity within
cliques and opposing opinions between cliques”, creating diverging opinion magni-
tudes i.e. polarisation. As noted, the exertion of influence becomes more coherent

or, in Heider’s terms, the tendency towards balance becomes more pronounced, as



Figure 2.1: “My enemy’s enemy is my friend” [1]. Balanced (left, mid-left) and
imbalanced (right, mid-right) triads.

the graph approaches a balanced state. This also reflects the echo hypothesis [18],
where opinions within a balanced group, either positive or negative, are enhanced
by further communication with others. Furthermore, this argument can also be
made via homophily [10] - as two factions emerge there is a stronger, not weaker,
social pressure to conform with one faction or another.

The analytic effect of increasing influence exertion is witnessed in dynamical
models where edge-weights and time are continuous [17, 19, 20]. In these cases,
positive and negative edge-weights diverge as the graph tends towards a balanced

state. This is one of the reasons motivating our focus on continuous models.

2.4 Social balance and triadic relations

In complete graphs, a sufficient condition for a complete graph to be balanced is
if all of the triads A;;; in the graph are balanced [21],

Xinikak > 0, \V/'i,j, kelV.

The central idea is that “friends agree in their opinion of a third party”. In social
systems, there is typically an overexpression of the balanced triads shown in Fig-
ure 2.1 [5]. It has been shown that social entities which are part of an imbalanced
triad experience stress, also termed social frustration or cognitive dissonance, and
tend to change their opinions to reduce the number of imbalanced triads in their
social network [22]. Hence, this naturally motivates the investigation of dynamical

models which drive a graph towards a socially balanced state.



2.5 Social balance and conflict

Explicit prediction of conflict is notoriously difficult versus other events such as
earthquakes as, by definition, social actors involved in the outbreak of conflict
break rules. The essay [23] provides an overview on the challenges of such pre-
diction. However, in practice social entities are observed to arrange themselves
into a balanced configuration before the outbreak of widespread bilateral conflict,
indicating that standard social balance and the threat of large-scale conflict are
positively correlated. A noteworthy example of this is the diplomatic relations
between entities leading up to WWI. The alliances and defections between nations
in the years preceding WWTI are illustrated in Figure 2.2, as detailed by Antal et
al. [24]. As is shown, the final state may be partitioned into two mutually op-
posing factions, in this case representing the Axis and Allied forces which, by the
Structure Theorem, constitutes a socially balanced graph. This is merely noted
as an empirical example in Antal et al., however, we present a comparison and
verification with our own models in later sections.

The literature is replete with other examples of the connection between social
organisation, conflict, and Heider’s balance theory. Moore [25] presents five studies
of international conflicts which result in perfect or near-perfect balance. Cervantes
[5] studies multilayer networks of nations, deriving a multilayer balance measure
that was shown to have a high correlation with the subsequent outbreak of conflict.
Smeets et al. [26] analyse 170 present-day Dutch novels, finding that the “majority
of triadic conflicts exist in a state of social balance”. Szell et al. [27] study six
different types of interaction between agents in a massive online multiplayer game,
providing a multiplex network validation of structural balance theory. Numerous

other examples are referenced in the survey article [21].

2.6 Discrete dynamics

Antal et al. [24] present discrete-time and weight models of dynamics of triads
in a fully connected graph, such that A € {—1,1}"*". They investigate the long-
time dynamics and phase transitions with respect to the density of friendly edges,

p, in the graph. The idea is that the models reflect known human behaviour to

10



French-Russian Alliance1891 -94 Entente Cordiale 1904 British-RussianAlliance 1907

Figure 2.2: Faction formation in the period 1872-1907 prior to the outbreak of
World War I in 1914, from [24]. Blue lines indicate alliance, dashed red lines
indicate enmity. Countries listed are Great Britain (GB), Austria-Hungary (AH),
Germany (G), Italy (I), Russia (R), and France (F).
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reduce the number of imbalanced triads in a social environment. Two models are
presented: local triad dynamics (LTD) and constrained triad dynamics (CTD).

The social interpretation of LTD is of the “social graces of the clueless”, where
friends are formed randomly without consideration of how the balance of other
relationships is affected. The governing model consists of a master equation con-
taining four compartments, describing the stochastic change in densities of triads
with k € {0,1,2,3} unfriendly links.

In CTD, a random relationship is flipped provided it increases the total number
of balanced triads. This may be interpreted as the dynamics of a graph consisting
of individuals who, when changing a relationship, will first consider the balance of
their entire social network.

A number of criticisms may be levelled against discrete approaches versus con-
tinuous ones. First is the lack of agreement between qualitative arguments and
numerical results which are outlined for CTD in [24]. Additionally, graphs follow-
ing discrete models are shown to approach a balanced state asymptotically. This
contradicts the notions of influence exertion introduced earlier!, a limitation not
witnessed in continuous models. Furthermore, the decision of ‘which link to flip’
is not encountered in continuous models. Finally, discrete dynamics such as LTD
contain fixed points at imbalanced graph states, known as jammed states. Such
phenomena are not typically encountered in continuous dynamical models, which

hence motivate the focus on the latter from here onward.

I As the graph tends towards balance, the exertion of influence is more coherent, hence the
rate at which the graph tends towards balance becomes greater.
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Chapter 3

Continuous dynamics

This section investigates various models available in the literature for the generic

matrix initial value problem, with X (¢) € R™*",

X =F(X), X(0)=X,. (3.1)

Kutakowski et al. [17] first introduce a dynamical model of social balance in
which X () € R™" represents the weights of an adjacency matrix of a graph G,
which are allowed to vary continuously in time. This approach is taken to allow
edges to vary in strength as well as in sign. X (t) is interpreted as an opinion
or reputation matrix, where the entry X;; denotes vertex ¢’s opinion of vertex j,
positive (negative) entries indicating friendly (hostile) relations. The differential
equation (4.1) specifies how the opinions of each vertex are updated. G is assumed
to be a signed undirected graph, hence opinions between nodes are symmetric,
X(t) = X(t)T, Vt > 0. As mentioned previously, the triad A;;; composed of
vertices 7, j, k, is balanced if X;; X, X}; > 0.

For symmetric initial conditions, the following continuous-time model is pro-

posed in [17],
X =X2  X(0)=X(0)7, (3.2)
or, in elementwise notation,
Xij=> XuXy, 1jEV. (3.3)
keVv

We may interpret this matrix differential equation as a gossiping mechanism. Here

1 changes its opinion of 7 by considering the relative opinions of every vertex k.

13



This model reflects both Heider and Newcomb’s theories in that communication
is the mechanism of change in social structures. The product of the signs of edges
Xir and Xj; force X;; in a direction that balances the triad A;;,. A variant of
these dynamics excluding self-loops is shown to lead to a balance for n = 3 vertices
[17]. Numerical results indicate balance is achieved for any n, however, this is not
proven analytically.

Although the signs of the opinion matrix X (¢) reach a balanced state, the en-
tries tend to blow up in finite time. This reflects the property mentioned earlier
that graphs reaching balance are characterised by diverging opinions, where co-
herent influence exertion creates positive feedback. Yet, as argued in [17], extreme
opinions tend not to spread as we prefer to be considered civilised. Addition-
ally, the well-known Bogardus scale [28] quantifying social distance is finite. Thus
to avoid the blow-up of opinions, an elementwise envelope function C(X; R) is
adopted based on Bogardus’ social distance. This leads to the following non-linear,

elementwise modification of the system

X2
Rg) > XuXiy. o (34)

Xij=C(Xi;R) Y XZka]_(
keV\{i.j}

keV\{i.j}
where R > 0. Note that this introduces n?/2 fixed points into the system satisfying
X;j = £RVi,j € V, the factor of 1/2 owing to X being symmetric. It is argued
in [17] based on computational results that values of R > 5 do not influence the
dynamics until balance is reached. For R = oo, corresponding to C'(X; R) = 1, the
uninhibited system (3.2) is recovered. Note that in order to prove convergence to a
balanced state and to analyse the stability of the fixed points in [17] and [29], the
model (3.4) does not contain self-loops, i.e. k ¢ {i,j}. We prove similar results
for a model with self-loops in later sections.
The initial condition Xy is chosen in [17] such that the upper triangular entries
are independent and identically distributed (iid) random variables, drawn from a
Y U(=1/2,1/2),i < j. The

strictly lower diagonal entries are then filled such that the matrix is symmetric.

uniform distribution of unit width around zero, X;;(0) ~

Numerical results in [17] show that, given a large number of vertices n > 100,

the time taken for the graph to reach a balanced state, t*, follows
t* oc Y2, (3.5)
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The authors justify this as (i) the velocity of an opinion or edge, Xij, is given as a
summation over n nodes k in (3.2), which grows linearly in n, however (ii) in the
initial condition X (0) ~ U(—1/2,1/2), the deviation of the sum of entries from
zero decreases with n~/2. The total contribution of increasing n on the velocity

1/2

is n'/%, with time as its inverse hence given by (3.5). It is noted that this holds

only when the initial distribution U is symmetric about zero.

3.1 Convergence to a balanced state

An open problem left in [17] is a proof for generic n that the system (3.2) will
bring an initial symmetric matrix X (0) to a balanced state. Marvel et al. [19]
prove this for large n by developing a closed-form expression for faction member-
ship as a function of the initial conditions, taking advantage of the symmetry of
the problem via spectral methods. They show analytically that the signs of the
graph edges converge to a balanced configuration consisting of either a bipolar or
consensus state. The solution is shown to take the form X (¢) = QA(t)Q', where
the eigenvectors remain constant with respect to time. It is also stated that this
form of solution occurs more generally for X = F(X) when F(X) is a polynomial.
This is not proven in the paper, thus we derive it below.

Given a matrix polynomial of degree M, we let F(X) = Z%:o am X™. The
following proof shows that, assuming symmetric initial conditions, the solution
takes the form X (t) = QA(t)QT. Hence, it is sufficient to model the evolution of
the eigenvalues A(¢) to understand the evolution of the whole system.

Letting (A1, Az, ..., A,) denote the decreasing eigenvalues of X (0), we express

the initial conditions via a symmetric eigenvalue decomposition as
X(0) = QA(0)QT, A(0) = diag(A1, ..., An), (3.6)

and letting Y (t) = QA(t)QT, we show that Y (¢) is identical to the solution X (¢)
by uniqueness. We differentiate Y (¢) with respect to time,

Y = QAQ" = QF(A)Q” (3.7)
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and, as QQT = I,,, note that the polynomial in Y () may be expressed as,

S

Q amAm] Q"
m=0
= QF(A)Q". (3.8)

Y (t) satisfies the flow Y = F(Y') and shares the initial condition Y (0) = X(0),
hence by uniqueness, X (t) = Y (t) = QA(t)Q. Given eigenvectors Q of X(0), for

a solution at time ¢ it hence suffices to solve the eigenvalue evolution for A(t),
A=F(A), A0)=diag(\, ..., ). (3.9)

Now returning to the derivation outlined in [19] for F'(A) = A?, the solution to
this decoupled (diagonal) system is

A1
1-X\t
A(t) = . >0 (3.10)
v

Note that this solution is only valid when ¢ is less than the minimum radius of
convergence which, assuming the largest eigenvalue of X (0) is positive, is given by
t < 1/A1. The solution at a given time X (¢) may be expressed as a linear com-
bination of rank-one matrices corresponding to the eigenvectors @ = (q, - .., qn),
again for \; > 0,

n

X(t) =3 Aslhaa?, < Ai (3.11)

i=1 !
Expanding denominators of A; in powers of ¢ gives X(t) = X(0) + X(0)%t +
X (0)3t* + ... with which the solution may also be written

X(t)=X(0)[I-X0)]", t< L (3.12)

A
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Noting that the singularity occurs at ¢, = 1/A; given the conditions: (i) A\; > 0;
(ii) Ay > Ag; and (iii) all components of q; are non-zero; we can see directly from
the summation (3.11) that X (¢) collapses to the rank-one matrix,

lim X (t) = Ajiquqy . (3.13)

t—t*

Normalising X () by the Frobenius norm serves to remove the scaling term Aj,

3.1.1 Convergence conditions

There are three conditions for an initial symmetric random matrix (with entries
drawn independently from a symmetric continuous distribution) to converge to a
balanced state: (i) Ay > 0; (ii) A; > Ao; and (iii) all components of q; are non-zero.

All three are satisfied in the large-n limit, which is proven below, from [19].

(i) This requires more specification on the entries of X(0). Given a symmetric

probability distribution G the diagonal and off-diagonal entries are given by

X000 % G(r, 02, i<
X,(0) % Gy, 0?) (3.15)

Given the second moments v? and o2 of G are finite, it can be shown [30]
that Wigner’s semicircle law applies as n — oo with high probability, which
specifies that the distribution of the eigenvalues of X (0)/+/n is compact and
centred around zero. Hence, in probability for large n, A; > 0.

Note that in this dissertation we typically let the first and second moments
be the same for all entries, 7 = u, v?> = o2, and define G as the normal

distribution, adopting the notation X (0) ~ N(u, o?).

(ii) Given the characteristic polynomial P of X (0) and its derivative @, X (0)
has distinct eigenvalues (and hence A\; # Ag) provided the P and @) do not

share a common root. P and () have a common root when the determinant
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of the Sylvester matrix composed of P and () is zero. The determinant is
a multivariate polynomial in entries of P and () and is non-trivial, as there
exist symmetric matrices with distinct eigenvalues, hence the set of matrices
for which this determinant is zero has Lebesgue measure zero. Assuming
X(0) is drawn from a distribution that assigns probability zero to matrix
sets of Lebesgue measure zero, it follows in probability that P and () do not
share a common root, and that every eigenvalue of X (0) is distinct. Hence

A1 # Ay and, where \; denotes the largest eigenvalue, Ay > As.

(iii) If q; contains a zero at index i, then defining q; € R"™! as q; with the
i-th entry removed, and X (0) € R®~D*(=1 a5 X (0) with the i-th row and
column removed, q; is an eigenvector of X (0) corresponding to the same
eigenvalue. Hence the corresponding characteristic polynomials P and P
share a common root, in which case the determinant of the Sylvester matrix
composed of P and P is zero. By the same argument used for condition (i),
the set of matrices that satisfy this requirement has Lebesgue measure zero.

Hence it follows in probability that all entries of q; are non-zero.

It is noted that both (ii) and (iii) hold for all n, whereas (i) holds in the large-n
limit. Provided condition (iii) holds, the positive and negative index sets of the
eigenvector qi, given by S = {k : ¢1 > 0} and T" = {k : ¢1x < 0} respectively,
partition the vertex indices into two opposing cliques of friends which, via the
Structure Theorem, instantiate a balanced graph. Thus the paper [19] concludes
that provided conditions (i)-(iii) hold, which they do with probability one in the
large-n limit, the system (3.2) will bring an initial random matrix to a balanced

state in finite time.

3.1.2 Forward Euler scheme

We use a forward Euler scheme to verify the results in [17] and [19]. Noting the
convergence results and conditions from the previous sections, for large n we define
convergence as a balanced complete graph as time approaches t* = 1/A;. This is
given (with high probability in large n) that the largest eigenvalue A; of X(0) is

simple and positive, and the associated eigenvector contains no zero entries. The
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Figure 3.1: Agreement between analytic and numerical solutions to (3.2) (cen-
tre), given symmetric initial conditions drawn from a standard normal distribution
X (0) ~ N(0,1) (left). Yellow indicates positive entries and purple negative en-
tries. A permutation of the index set of vertices, P(-), illustrates that the end-state
has a balanced sign structure by Theorem 3. Plotted in Python with n = 16.

numerical solutions are obtained with the time discretisation At = t* /M such that
X™ = X (mAt) with

ty, =mAt, m=0,1,...,M —1, (3.16)
and instantiating a forward Euler scheme,
XM= X™ 4 F(X™)At. (3.17)

Figure 3.1 compares the analytic solution (3.12) and numerical solution (3.17),
illustrating the sign structure of X at a time just before the singularity at ¢ = t*.
These ‘final states’ are plotted at T'=t* — € and t = (M — 1)At for the analytic
and numerical solutions respectively. A permutation of the final state shows that
the sign structure satisfies the Structure Theorem, hence the graph is balanced.
Note here that n = 16, resulting in factions of different sizes. For larger n the
factions in the end state tend to equal size, see [19] for proof.

The associated dynamics of X (¢) under the Kutakoski model (3.2) are shown
for t € [0,t*) in Figure 3.2. The results are illustrated for initial distributions with
means 0 and 1, which result in bipolar and consensus final states respectively,
consistent with [19].

It is proven in [19] that X (¢) converges to a rank-one matrix for symmetric

initial conditions, corresponding to an undirected graph. Traag et al. [20] show
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t t

Figure 3.2: Numerical dynamics of the entries of X (¢) under (3.2), coloured green
(positive) and red (negative) corresponding to the sign of the entry on approaching
t* = 1/\1, shown as a dotted black line. The resulting balanced states are bipolar
for ;1 = 0 (left) and consensus for p = 1 (right). Plotted in Python with n = 32.

that this is also the case for normal initial conditions. They later show that
convergence does not happen, in general, for non-normal initial conditions (and

hence directed graphs in general), a proof of which is outlined in [20].

3.2 Model for directed graphs

Traag et al. [20] propose an alternative initial value problem that converges to

balance for directed graphs, given by
X=XXT X(0)=X,, (3.18)
or, in elementwise notation,
Xij =Y XaXp, iL,jeV. (3.19)
keV

In the context of the earlier interpretation of the dynamics representing gossiping
mechanisms, here vertex i considers j’s opinion of all the vertices k in the graph
and updates its opinion of j accordingly.

Although the interpretation of this alternative mechanism is not as intuitive

from a gossiping perspective, it is proven in [20] that X () converges to a symmetric
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rank-one matrix for the initial value problem (3.18) with generic, non-normal initial
conditions, Xg € R™ ", The proof relies on the fact that the differential equation
is symmetric and that any matrix may be decomposed into symmetric and skew-
symmetric components, X (t) = S(t) + A(t). As XX7T is symmetric the flow
only acts on the symmetric components of X, where skew-symmetric components

remain constant, given by Ag. The solution hence takes the form
X(t) = S(t) + Ao, (3.20)

where S(t) can be found by letting S = e 40 Set4 and solving

~ A

S=58%—4, 5(0)=S5,. (3.21)

Under specific conditions outlined in [20], the growth of the symmetric component

then drives the entire solution to a state of balance.

3.2.1 Numerical comparisons

Here we replicate and compare numerical solutions to the models presented in
[17] and [20], F(X) = X? and F(X) = X X7 respectively. For symmetric initial
conditions, symmetry is preserved under both flows, hence X () = X (¢)* V¢, in
which case the solutions under both models are identical, driving the graph to the
same balanced state as shown in Figure 3.3. This is of course not the case for
non-symmetric initial conditions where, as mentioned in the previous section, only
the latter reaches a balanced state, shown in Figure 3.4.

We note a lack of qualitative explanations in the literature as to why only
the latter model drives non-symmetric initial conditions to balance. We suggest
one here. In the former model F(X) = X?, the product X;;, X}, which guides
X;; towards balancing the triad A;;; accounts for paths in one direction only:
from i to k to j. The latter model is bidirectional, owing to the presence of X7,
driving balance in both directions and hence leading asymmetric graphs to states
of balance. We found and verified computationally that other permutations of
the above models lead to balance for asymmetric initial conditions, provided they
contain a factor of X7, e.g. (X7)? XTX.
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Figure 3.3: Comparison of the convergence for symmetric initial conditions. The
index set of vertices is permuted in the final states to yield the illustrated block
sign structure, showing both models are balanced. Plotted in Python for n = 32.

Figure 3.4: Comparison of the convergence for generic non-symmetric initial con-
ditions. Here, only the model F'(X) = XX7 converges to balance. Plotted in
Python for n = 32.
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Figure 3.5: Time dynamics of balance of for F(X) = X? [17] and F(X) = X X7
[20] models, for non-symmetric initial conditions (left) and symmetric initial con-
ditions (right). In the non-symmetric instance, the former model fails to converge
to balance with a final state of b(G) = 0.7 at the singularity.

The dynamics of the degree of balance b(G) under each model is shown in
Figure 3.5 for symmetric and non-symmetric initial conditions, from which we can
also infer the rate at which the model drives the graph towards balance. As noted,
the dynamics are identical for symmetric initial conditions and only the model
F(X) = XXT drives the graph to balance for non-symmetric initial conditions,
indicated by b(G) = 1. In cases where balance is achieved, the rate of change
of balance increases as the graph becomes more balanced, reflecting increased
coherence of influence and pressures to conform within the graph, as we argued is

a benefit of continuous models in earlier sections.

3.2.2 Behaviour on other graph topologies

A natural progression of the above work is to consider dynamics on other graph
topologies. However, the convergence conditions outlined earlier and in [19] for a
balanced, fully connected end-state still hold. Thus, provided that the graph is
not disconnected and satisfies such conditions, the graph will still converge. This
is demonstrated on a signed triangular lattice with periodic boundary conditions.

In two dimensions, this defines a triangulation of a torus, which we define as the
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Xo P(X(tc))

b(G) =0.4262

b(G)=1

Figure 3.6: Form of X representing a non-symmetric torus triangulation (left),
corresponding to a triangular lattice with periodic boundary conditions, and the
resultant balanced state at the singularity under the flow F(X) = X X7 (right).
Shown below each plot is the degree of balance b(G). Green indicates no edge, i.e.
a weight of 0. n = 64.

non-symmetric edge-set 7, and draw the edge weights from a normal Gaussian

distribution,
XijNN(O71)7 (7'7]) GT

o (3.22)
Xz'j - O? (Zaj) ¢ T.

As the graph is not disconnected and the distribution of the entries of X (t) is
symmetric about zero, by the conclusions from [19] and [20] we expect the flow
X = XXT to drive the initial condition to a fully connected, balanced, bipolar
state. The (non-symmetric) triangular lattice adjacency matrix is generated in
code for any n, and the resultant balanced state is computationally verified, as

shown for n = 64 in Figure 3.6.

3.2.3 The symmetry of end states

We note that even for non-normal initial conditions, the final (balanced) state un-
der the model (3.18) is symmetric [20]. This is consistent with the graph-theoretic
formulation of structural balance as first investigated by Harary-Cartwright [15].
They conclude therein that whenever the edges X;; and Xj; are of different signs,
the signed graph containing them is not balanced. Hence, even for asymmetric

initial conditions, it is a necessary condition that the final state is symmetric.
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Although the model X = X X7 is interesting from a directed graph perspec-
tive, we limit many of our further investigations to the symmetric case with the
associated model X = X2. The motivation for this is two-fold. The first is that
symmetry of relations is a necessary condition for a balanced graph, as outlined
above. The second is sociological, in that humans are typically effective at per-
ceiving positive and negative sentiments of others, such that relations between

individuals have a natural tendency toward symmetry [31].

3.3 Other models

Another model is that of Shang et al. [32], who argue that vertices do not perceive
the opinions of others perfectly, due to normative pressure in the social environ-
ment or the persistence of initial impressions. Hence a discrepancy between real
sentiment X and “perceived sentiment” X is encountered, and the latter is mod-
elled as a combination of actual sentiment and an ‘outside influence’ matrix.
Wongkaew et al. [29] investigate an optimal control strategy of the modified
system (3.4) through the use of a leader vertex which steers the dynamics towards
a state of consensus. The leader is denoted as the zeroth vertex in the following

control system with initial conditions X (0) = X and u(0) = wy,

XOZ' = ul(t)7

. 1 X7
Xij — m (1 — RQJ) Z Xz'kaj + 'YXOiXOj’
keV\{i,j}

(3.23)

where v is a static control parameter and the control variable u;(t) represents the
prescribed edge weight between the leader and vertex i.

The optimal control u;(t) driving the graph to a state of balance is then de-
termined by defining a cost functional J which is minimised subject to the initial
value problem (3.23) using a Runge-Kutta scheme and conjugate gradient method.

A drawback of this method however is that it can drive the graph to consensus,
but not to bipolarity. This limitation is overcome by a control model we introduce

in later sections.
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In this chapter we investigated existing unbounded models in continuous time,
numerically replicating the dynamics which diverge at a time t* = 1/\; and outlin-
ing the associated conditions required for the graph to tend to a state of balance.
The behaviour over different linear graph topologies is the same, provided the
graph is not disconnected, and we illustrate an example of this. We provide a
qualitative argument for why a model on directed graphs leads to a state of bal-
ance. However, we note that at a balanced state relations must be symmetric, and
hence we motivate our focus on the model X = X2. This model forms a base from

which we consider various extensions, outlined in the following chapter.
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Chapter 4

Model extensions

In this chapter we present extensions of the Kutakowski model [17] on undirected
graphs, ie. X, = XI. We first include a factor of 1/n in the basic model,

accounting for the size of the graph which we use going forward,

: 1
X=FX)=-X% X(0)= X, (4.1)
n
or, in elementwise form,
. 1 o
Xi; = Fy(X) = - l;Xikaj, i,jevV. (4.2)

This slows the dynamics, the solution following eigendecomposition being domi-

nated by the leading eigenvalue,

At

All(t) = 1— ﬁt7

(4.3)

with the singularity now located at t* = n/\;.

To prove that t* is finite for large n we need to know the dependence of A\; on
n. In the case where X is a symmetric Gaussian matrix with iid entries of mean
zero and variance one (for i < j), we use the result from Bai and Yin [33] that the
eigenvalue distribution of Xg/+/n converges to Wigner’s semi-circle distribution on

[—2,2] with probability one, hence

lim — = 2. 4.4
by 44
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As the largest eigenvalue scales as A\; ~ 2y/n in probability, then t* ~ \/n/2. We
conclude that provided n is large but finite, the conditions required for convergence
outlined in Section 3.1.1 still hold for (4.1). This argument also connects the

numerical results of [17], t* oc n~/2, with the arguments in [19], t* = 1/A;.

4.1 Dynamics with saturation

With an appropriate non-linear modification of the system, the dynamics may be
bounded (smoothly) to some prescribed range [—R, R], as in [17, 29]. This is done
previously without considering self-loops, i.e. X; = 0, Vi € V. To bound the
dynamics of (4.3), we outline the analogous model which includes self-loops. In
elementwise notation, this is given by,

2

Xi; = My(X) = (1 - X”) Fy(X), i,jeV. (4.5)

R2
where F;; is ¢j-th entry of one of the dynamics discussed previously. By including

self-loops we can also define the model in matrix notation,

. XoX
X = <1nm — T) ® F(X), (4.6)
where 1,,.,, denotes a matrix of ones and ® the elementwise product. The forward
Euler solution for various initial conditions is shown in Figure 4.1. As the singu-
larity in the original system has been removed by the nonlinear modification, we

now refer to t* as the time the graph ‘saturates’ at a balanced steady-state.

4.1.1 Convergence

The condition for convergence to a balanced state for the model (4.5) excluding

self-loops is outlined in a paper by Wongkaew et al. [29], and given by
X;;(0) > =R, Vi, jeV, (4.7)

however, we found this to be incorrect: we provide here a case which satisfies (4.7)
but does not result in a balanced graph. We then reformulate the arguments in
[29] into two lemmas that acknowledge this correction. This is applied to graphs

containing self-loops, not requiring zero entries on the diagonal.
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Figure 4.1: Forward Euler solution to (4.6) for a range of symmetric initial con-
ditions with R = 10, n = 32. The singularity of the unbounded model t = n/\;
is shown as a dotted black line, illustrating that the non-linear modification slows
down the dynamics.

Consider an initial constant matrix, X;; =aVi,j € V, where —R < a < 0. In
this case every entry of X uniformly tends to zero from below, corresponding to a
fully disconnected graph. This is proven as follows. First we note that the set of

constant matrices C = {al,x, |a € R} is invariant under the flow (4.6),

a 1
M(alnxn) == (]-n><n - ﬁlnxn> ®© EO/Z]"IQ'LXTL

a2
= (1 — —) a*1,5n €C, (4.8)

noting 1,,, ©1,xn = 1uxy, and 1

initial value problem,

i = (1 — x—Q) 2, 2(0) = a. (4.9)

which has fixed points at * = {—R, 0, R}. To study how z approaches zero from
below, let x ~ € where |¢| < 1, such that

i~ 2?4+ O(x?) (4.10)
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Figure 4.2: Plot of the case contradicting the condition (4.7). Here R = 10, hence
Xo = —81,xn > —R1,y,, satisfying (4.7). However, the numerical solution of
the full system (red) approaches zero from below, converging to the asymptotic
solution (4.11) (black-dashed), instead of a balanced state with entries X;; = £R.

Hence as x — 0, the solution asymptotically approaches,

a

~— 411
1—at’ ( )

(1)

which, for a < 0, it is clear that this converges to zero at leading order. Hence
every entry of the matrix X = al,, converges uniformly to zero for —R < a < 0.
In the case of @ > 0, the matrix converges to a balanced state of consensus,
X = R1,«,. Weillustrate the former case computationally in Figure 4.2, showing
that it converges to the asymptotic solution (4.11).

With this result in mind, we reformulate the propositions in [29] correctly and

apply them to graphs with self-loops in the following two lemmas.

Lemma 4. Given a connected graph X;;(0) € (=R, R),Vi,j € V and X(0) =
X (0)T, then fort < t* the following result holds under the flow (4.6) with F(X) =
1x2

! d

SN OXa(OXy(t) >0, VigkeV. (4.12)

where 1, j, k are not necessarily distinct.
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Proof.

d . ) .
U Z Xij XipXpj = Z (Xinik:ij + X3 X Xij + Xinik;ij>

i,j,keV i,j,keV
1 X? ’
_ tj
13 (- 5) (D)
i,jEV keV
+= AZ - ZXinjk ZXUXM
i,keV JEV JEV

| X2
+ - ( - R—;> (Z XMXU> (Z Xinik> . (4.13)
iev iev
As the set of symmetric matrices X is invariant under F' = X?, given symmetric
initial conditions, X;;(t) = X;;(t), Vt € [0, 00), hence

d 1 X7 ’
EZ&%mﬁﬁzﬁwﬁ)ZM%

05, kEV ijEV kev

+% < _ %’%) (Z Xz’sz‘k>2- (4.14)

Provided |X;;| < R, Vi,j € V and the graph is connected, the above term is
strictly increasing. This occurs until the graph reaches a fixed point |X;;| = R or
| Xi;] =0Vi,j €V at a time denoted ¢*. O

Note that the statement (4.12) does not imply the graph ultimately reaches
a state of balance. As proven, the trivial fixed point X* = 0,,+,, corresponding
to a graph with no edges, is an w-limit point for all X;; = a Vi,j € V, where
—R < a <0, but it converges such that (4.12) holds for t € [0, 00). The following
lemma, also a corrected reformulation of a proposition in [29], shows that if at
some point the graph in fact reaches balance, then either —R or R is an w-limit

point for each entry X;;. We also prove this for graphs containing self-loops.

31



Lemma 5. If a fully connected graph G s balanced, then under the dynamics
(4.6), for each entry of X, one of the points {—R, R} is an w-limit point, i.e. the
following limit holds,

lim X;(t) = +R. Vi jeV. (4.15)
—00
Proof. Define the potential
1
Vi) =7 > (X5 - R’ (4.16)
ijev

and take the derivative with respect to time,

i,jEV
1 X5
== ) (X5 - R)Xy (1 - R;) > XXy
ijev keV
1
- ST - R Xy XX, (4.17)

i,jeV kev

If G balanced and fully connected, X;; X;3 Xx; > 0, Vi, j,k € V, and hence vV <O0.
If |X;;| # R for any ¢,j € V, then V < 0. Hence the limit (4.15) holds. ]

The additional factor of 1/2 in V(x) accounts for the fact that the graph is
undirected, such that each edge represented in the symmetric matrix X is only
counted once. The reason Lemma 5 is not applicable in the previously discussed
case of X = al, «, for —R < a < 0 is that no graph containing equally weighted
negative edges is considered balanced, nor will such a graph reach a state of balance
as it asymptotically approaches 0,,y, from below. Thus the result of Lemmas 4
and 5 is that under the model (4.6), provided |X;;| < RV i,j € V, a connected
graph tends towards a state of balance and, provided the graph in fact reaches a
balanced state, the edges converge to a value of =R, corresponding to a balanced

fixed point.

4.1.2 Stability of utopian and dystopian states

Wongkaew et al. [29] also perform a local analysis around two specific fixed points:

all positive and all negative relations, i.e. X/ = R and XJ; = —R, for all
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i,7 € V\ {i = j}, corresponding to balanced ‘utopia’ and imbalanced ‘dystopia’
respectively. To do so, the authors vectorise the matrix system and analyse the
associated Jacobian. We outline a similar proof including self-loops in the following
section, as it provides a basis for us to then prove the stability of all balanced fixed
points in general. However, we first note that there is a more straightforward way
of assessing the stability of the specific two fixed points addressed in [29] when
we include self-loops: it allows us to investigate the case X* = £R1,., € C, for

which we can simply analyse the Jacobian of the reduced system (4.9) at * = +R,

4
J(z) =2z — ﬁx:}, (4.18)

for which J(+R) = F2R. Hence X* = R1,, is stable and X* = —R1,, is
unstable. This is verified computationally and illustrated in Figure 4.3. This is
a reasonable result, as we know from Lemma 4 that the system drives the graph
towards a balanced state; the utopian fixed point X* = R1,y, is already in a

state of balance, whereas the dystopian fixed point is imbalanced.

Xo= —R1lpxn+&nxn Xo=R1lpxn+&mxn
20 A 20 A
10 A 10
~10 ~10
-20- -20-
0.0 Ol.l 0.0 011 012 OI.3 0.4

t t

Figure 4.3: Stability of fixed points X* = £R1,,«, with R = 10 and n = 32. The
system (4.6) is initialised at the fixed point with a small perturbation matrix with

entries ;5 w N(0,0.001). The numerics indicate that X* = —R 1,4, is unstable
and X* = R1,y, is stable, in agreement with analytic results.
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4.1.3 Stability of all balanced fixed points

We first show an alternative proof of stability around the two fixed points X* =
+R1,x,. This provides a natural basis for consideration of the stability of bal-

anced fixed points in general. Recalling the elementwise form of the system is

x ) > XX, (4.19)

2
ij
R2?
keV

M(Xy) = % (1 -

we can vectorise the system, similar to [29] but including diagonal entries corre-
sponding to self-loops. In our symmetric setting we vectorise the upper triangular
component of X row-wise. The resulting vector of length K = n(n + 1)/2 has the

structure,
X = (Xlla s 7X1n7 X227 s 7X2n7 B 7X(n—1)(n—1)a X(n—l)na Xnn) € RK- (420)

Let T be the index set of pairs where (i,5) € T covers the upper triangular
component of X such that |T'| = K, the pairs ordered as in X above. Letting
M(X;;) = My;, in defining entries of the Jacobian J € RX*X below we maintain
the matrix indexing, differentiating with respect to X,,, where (p, q¢) € T'. Diagonal

terms of the Jacobian hence correspond to (i,7) = (p, q).

1 X\ 0
D XX+ (1= 55 ) 50— D XaXyy (421)

keVv Pq pev

2
_ tj
0X,, 10X, R

oM;; 1 0 <1 X
At the two fixed points, X* = +R1,,«,, the second term in the above equation is
zero and the summation contained in the first term is nR%. The first term is only

non-zero when (i, 7) = (p, q),

aMz QR; .a . - bl
j _JF (i,7) -(p q) (4.92)
0X,pq | Xij=%R 0, otherwise
Thus nonzero cases correspond to diagonal entries, hence the Jacobian is
J(£R1,x,) = F2R Ik, (4.23)

where [ is the identity matrix. As the diagonal entries are equal to the eigen-
values, X* = R1,,«, is stable and X* = —R1,,.,, is unstable, consistent with our

earlier conclusions.
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We now classify the stability of the fixed points X* € B which correspond
to the balanced states of the system, showing that all of them are stable. The

challenge here is in inferring the sign of the summation

> XX, (4.24)

keV
which dictates the sign of the corresponding entry in the Jacobian. First note that
X is symmetric, hence the above summation is equivalent to an inner product of
the rows ¢ and j. We observe that in a balanced state, if vertices ¢ and j belong
to the same faction, then their opinions of others (and themselves) are coherent.
The opposite is true if they belong to separate factions. Hence given the vertices
are members of the factions ¢ € V; and j € V5, we conclude that if a fixed point is
balanced, then

2 _
ZXikak _ ' =V (4.25)
kEV _nR ) ‘/1 % ‘/YQ

This is consistent with the Structure Theorem 3. Now note that at a fixed point,
Xi; = R if 7 and j belong to the same faction, ie. Vi = V5, and X;; = —R
otherwise. Hence the product of X;; and the above sum is positive for all X* € B.

Therefore the entries of the Jacobian (4.21) are given by

g _ {—2& ()=09 g (4.26)

0X,q

Xij=+R 0, otherwise

Hence X* is stable for all X* € B. This is verified numerically, shown in Figure 4.4.
This is a reasonable result when considered from the context of Lemmas 4 and 5,
where we know if a graph is balanced and the entries are in the appropriate range,
then X will tend towards a fixed point X* € B. Hence the conclusion that such

fixed points are stable is justified.

In this section, we investigated an existing model with bounded dynamics (4.6).
We outlined Lemmas 4 and 5 as corrections to propositions made by Wongkaew
et al. [29], outlining the conditions for the bounded dynamics to reach a bal-
anced fixed point. The authors in [29] also prove the stability of two fixed points
corresponding to all-positive or all-negative graphs, but we do better. Here we

generalise our earlier proofs for the stability of X* = £ R 1,4, to characterise the
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Figure 4.4: Stability of a balanced-state fixed point, X* € B, each entry perturbed
jid
by eij Zsz

(0,0.5). The instability of an imbalanced fixed point is also shown.
stability of all balanced fixed points, showing that they are all stable. We connect
this finding to Lemmas 4 and 5. The generalisation to balanced fixed points is
achieved by our observation that the inner product of rows ¢ and j is negative if
the corresponding vertices belong to different factions, and positive if they belong
to the same faction.

We now utilise these findings for further extensions based on static control and
a multiplex topology. To our knowledge, we present such models in the following

sections as novel contributions.

4.2 Static control model

In this section, we present a control model (4.27) which can steer the graph towards
a desired balanced state. The control is determined by a desired balanced fixed
point, denoted as X* = vv’, and parameterised with 8 € [0, 1]. Ideally 8 < 1,
the control serving to nudge the system via a small perturbation onto a trajectory

that leads the system to the desired state. The model is given by
X=CX;R) 0 [(1-B)FX)+Bvv" —X)]. (4.27)

This has the advantage that the desired end-state (bipolar or utopia) and, more
specifically, the clique to which each vertex belongs, may be prescribed by the

modeller by prescribing v.
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The prescription of the balanced end-state of the graph is achieved by assigning
positive or negative entries to the state vector v.€ R". In the case of a (maximal)
2 cliques in the end state, vertices belonging to the same clique will carry the same
sign in the corresponding entry of v, as illustrated below. The factor v/R ensures
that X* = vv’ is a fixed point of the system (4.27).

Faction A +1
Faction B -1

— v=VR]| | (4.28)
Faction A +1

Figures 4.5-4.8 illustrate that the graph may be steered to bipolar or consensus
states, defined by the target steady-state X* = vv?. We define the cut-off time
t. > t*, chosen arbitrarily once the dynamics reach a steady state.

The key benefit is that our model (4.27) admits prior specification of a bipolar
end state. Previous adaptive control models in [29] involve a different control
mechanism and find (numerically) the optimal control to drive the graph to a
consensus state (3.23). However, the limitation noted by the authors is that there
is no mechanism to steer the graph towards a desired bipolar state. This limitation
is overcome here, and with reasonably low values of the control parameter (3 - the

subject of investigation in the following section.

4.2.1 Test for S

We now outline a numerical test to determine which values of § result in conver-
gence to the desired state X*. To quantify how close the final state X (¢.) is to the
desired state X*, it is useful for our purposes to define a similarity measure. For
two matrices A and B, the metric S € [0, 1] is defined as

S(A,B) =1~ —[|A~ Bl|r. (4.29)

2n’R
where || - || denotes the Frobenius matrix norm. We construct this with the
properties S(A, A) =1 and S(A, —A) = 0.

For each test run, we use a symmetric standard Gaussian initial condition and
a randomly initialised target state, v; = vV R(2B — 1), B ~ B(1/2), where B is the

Bernoulli distribution. The convergence with respect to the similarity measure
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X(0) =X(0)T

X(t:) w/o control  X(t:) w/ control

Figure 4.5: Plots of the initial condition, desired state defined by random target
vector X* = vv’, and end states without and with control. Clearly the controlled
end-state matches X*. The cut-off time ¢. > t* is chosen arbitrarily once the
dynamics reach a steady state. The associated dynamics are shown in Figure 4.6.
R =10, 8 =0.025, n = 16.

w/o control w/ control

|
=
wu

|
—
wu

Figure 4.6: Controlled and uncontrolled dynamics for a random desired state.
R =10, 8 =0.025, n = 16.
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X(0)=X(0)" X" X(t.) w/o control  X(t.) w/ control

Figure 4.7: Plots of the initial condition, desired consensus state X*, and end states
without and with control. The steady-state of the controlled model is consensus,
again matching X*. The associated dynamics are shown in Figure 4.8. R = 10,
B =0.025, n = 16.

w/o control w/ control

|
[
()]

|
[y
w

Figure 4.8: Controlled and uncontrolled dynamics for a desired consensus state.
R =10, 8 =0.025, n = 16.
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Figure 4.9: Average similarity S between the controlled end-state X;. = X (t.) and

the desired state X* with respect to the static control variable 3, averaged over 10
test runs with Xo < A (0,1) (left). The critical control value S, for convergence is

plotted against n='/2. R = 10.

is shown in Figure 4.9 for various values of n. What we note from Figure 4.9 is
the relatively low values of 8 for which the desired state is reached, for example
£ > 0.035 for a random graph of size n = 32.

We find a dependence on n for n < 256, which is a result of the random
initial conditions used, Xo ~ N (0,1). At ¢t =0, the sum ", ., X;X}; is normally
distributed and centred on zero by the Central Limit Theorem, hence the deviation
of the sum from zero decreases with /n, in which cases the relative influence of
the control is greater. Hence for small n, we expect the influence of the graph
size on the critical control value for which the desired state is reached, ., to be

proportional to 1/y/n. This is illustrated in Figure 4.9.

4.2.2 Stability of the control model

We now show that the condition on [ for the stability of balanced fixed points,
X* € B,is f < R/(R+ 2). We define entries of the control model (4.27) as
X, = D;;(X;R,v) = D;; and proceed as in Section 4.1.3. In the case where X;
matches the desired fixed point X},

ing diagonal entry in the Jacobian is —2R(1 — 3), stable as before. When such

the control has no effect, and the correspond-

states do not match, then X, — X;; = F2R, and the corresponding entry on the
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diagonal of the Jacobian is

—_— = —2R(1 — 45. 4.
TX |y = 2R B) 449 (4.30)

This is less than zero for all ¢, j provided 8 < R/(R + 2), for which the balanced
fixed point is stable. This is a mild condition given our numerical results above,

typically requiring 3 ~ 1072 for the end state to match a random desired state.

We now define our prescribed rank-one matrix X* = vvl as a diplomatic
target, which in the context of the initial value problem serves to constantly nudge
opinions or relations towards a specified state. Applying this to the case study of
countries leading to WWT in the paper by Antal et al. [24] and also in comparing it
to the model proposed by Marvel et al. [19] on a dataset harvested from Zachary’s
karate club study [34], we show in both cases that this model correctly classifies

all parties for reasonably low values of the control parameter .

4.2.3 Case study 1: Alliances in World War 1

We apply the models to the example of alliances and enmity between nations in
the period leading up to WWI shown in Figure 2.2. This is given as an empirical
example of international relations tending toward socially balanced states in Antal
et al. [24], shown in Figure 2.2, but it is not used in the analysis of their model. We
use each snapshot up to 1904 as an initial condition, run the control model using
the 1907 Allied and Axis alignments as the diplomatic target, investigating how it
performs versus the uncontrolled model with saturation (4.6) as both models are
initialised closer to the outbreak. Results are shown in Figure 4.10.

We observe that the controlled model leads the graph to the desired state
in every case. The uncontrolled model only achieves the correct classification
for the 1904 initial configuration. Otherwise, the uncontrolled model typically
misclassifies one country. An interesting point of note is that the non-control
model also fails to elicit any relationships for Italy in the first instance, where
Italy is disconnected from the graph. The control model successfully inserts Italy
into the final state, however, which points to its use in modelling the growth
of initially disconnected graphs, where vertices that are disconnected under the

original model would otherwise remain disconnected.
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1882

1890

1891

1904

Figure 4.10: Controlled dynamics of positive (yellow), neutral (green), and neg-
ative (purple) relations between nations preceding WWI. Initial states (far-left
column) are obtained for different years from [24], and the diplomatic target for
the control model is given by the 1907 state of Allied and Axis forces (mid-left).
End states predicted by the original model with saturation (4.6) (mid-right) versus
the control model (4.27) (far-right).



initial year 6]

1872 0.119
1882 0.122
1890 0.016
1891 0.029
1904 0.000

Table 4.1: Minimum values of 8 for which every country is successfully classified
to three decimal places, given initial data at the years specified.

The minimum values of the control parameter for which the model correctly
classifies every nation is given in Table 4.1. Referring to Figure 2.2, we argue that
in the first two instances, a larger value of § is required to achieve the desired
state because there are fewer edges present in the graph, i.e. the initial data is
more sparse, and edges present involve positive relations between Russia and both
Austria-Hungary and Germany, an alliance that does not persist. As the year from
which the model is initialised becomes closer to the outbreak in 1914, we find that
values of 5 one order of magnitude lower are required to reach the desired state.
From 1904, the original model correctly classifies each party. The difficulty in pre-
dicting the final state from earlier years of course reflects the inherently stochastic
nature of social relations, but it proves reasonably effective when initialising from

later years, in which only low values of £ are required to reach the actual state.

4.2.4 Case study 2: Zachary’s karate club

Zachary’s karate club study [34] is a well-known example in network theory, con-
cerning the fission of small groups into two opposing factions. The study follows
the relationships between 34 members as a club split in two due to instructor wage
disagreements. The benefit of the supplied dataset is that it provides information
on the frequency of social interaction between individuals shortly before the fission
and details of which faction-club individuals joined afterwards.

In the study, the frequency of interaction is argued to be linearly dependent on
the strength of relationships and quantified on a scale of discrete values in the range
[0,8]. For our investigation, this range is scaled to [—1,1]. Data for the target

state X* = vvT and initial state X, € R33! are harvested from the paper [34].
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Numerical solutions to the saturating model without control (4.6) and the static
control system (4.27) for the dynamics and final-state are shown in Figures 4.11
and 4.12 respectively. The desired state is achieved for 5 = 0.009.

A similar study is performed by Marvel et al. in [19] for the unbounded dy-
namics X = X2, as in (3.2). The classification of the end states is found here to be
the same for the analogous model including saturation (for R = 10). These models
at best misclassify one individual in the bipolar steady state. However, by adding
a small term that nudges the system towards the desired state as introduced here

in (4.27), the system correctly classifies all members in the final state.

In this section, we presented a novel adaptive control scheme to drive the graph
to any prescribed balanced state. This improves on the limitations of previous
models [29], which are only able to steer the graph to consensus. We derive
a stability criterion for our control model at balanced states, 5 < R/(R + 2),
considered mild given that the requirement to bring a random initial state to a
target is typically on the order of 3 ~ 1072, found numerically.

The two case studies presented show that a specific bipolar state may be
achieved for low values of the control parameter 5. In both cases, we prescribed
the desired state X* based on the known final associations of vertices in the graph.
In reality, such states are not known a priori. However, the control parameter may
be tuned such that the final balanced state accounts for the state vector v, but is
not determined by it. Hence, v may be used to encode other non-deterministic in-
fluences, such as expert analysis, histories of relations, known political sentiment,
or knowledge from data mining. In such cases, f may be used to quantify the
modeller’s trust in the knowledge source. This control model may also be applied
to connect initially disconnected graphs, which as we illustrated would otherwise

stay disconnected in uncontrolled settings.
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X" X(t.) w/o control X(t.) w/ control

Figure 4.11: The initial state of relations between club members (far left), followed
by the actual balanced distribution of members following the fission of the club
(mid-left). The steady-state without control (mid-right) misclassifies at least one
individual [19], depending on the linear map used for the initial conditions. The
controlled steady-state (far right) matches the actual result. This is achieved for
a relatively low value of the control parameter, with a lower bound of f = 0.009
to three decimal places.

w/o control w/ control

Figure 4.12: Associated dynamics of relations initialised with data from Zachary’s
karate club study. Here R = 10, n = 34, 8 = 0.009.
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4.3 Multiplex graphs

Aside from adding a control mechanism, another interesting extension of the dy-
namics is to couple (linearly) the dynamics of multiple layers of a multiplex graph.
For unbounded models, the application to multilayer graphs is not particularly in-
teresting. Once one layer blows up, it dominates the dynamics of the other layers
for all @« € (0,1]. The result, which is verified computationally, is that the final
state of every layer is identical. However, this is not the case when the model
with saturation (4.6) is generalised to a multiplex topology. For a graph with two

layers, L = 2,
Xl = (1 — Od)M(Xl) + OJM(XQ), Xl(O) = X0(1)7

. (4.31)
X2 = (1 — Oé)M(XQ) + O[M(X1>, X2(0) = X()(Q),

there is a critical value of the coupling parameter o, above which both layers tend
to the same balanced state and below which the layers tend to different states.
The dynamics and end-states are illustrated for a range of « in Figure 4.13. Again
using the similarity measure, S(X;, X3), the equivalence of the final states for
a 2 0.35 given random initial conditions is shown in Figure 4.14. We also provide
a local analysis for the nine fixed points of the associated reduced system in R?
when considering constant initial conditions, X;(0), X5(0) € C. This is outlined in
Appendix A. As we characterise the relevant fixed points for the full system (4.31),

we do not include the analysis of the reduced system here.

4.3.1 Stability of utopian and dystopian states

We have already proven the stability of the system around the two fixed points
X* = 4+R1,, for a single layer, L. = 1, in Section 4.1.3. This provides a basis
for consideration of the multiplex case. In the L = 2 multiplex case, it is again

helpful to consider the elementwise form of (4.31),

. 1 X 1 X5e)
Xijy = (L—a)— |1~ T D Xy Xy + a |\ 1= > X Xij2),

keV keV
: L Xe L, _ X
Kijo) = (1 —a) (1 — | 2 X Xege) +am | 1= —7 | > Xy X,
keV keV
(4.32)
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Figure 4.13: Dynamics and end-states of two layers, with respect to the coupling
parameter o. Both layers tend to the same state for « = 0.35, agreeing with
the numerical test in Figure 4.14. At higher values of a the dynamics are more
strongly coupled and begin to show oscillatory behaviour, overshooting +R. Both
initial conditions are iid and drawn from a standard normal distribution A/(0,1).
R =10 and n = 16.
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Figure 4.14: Equivalence of multiplex end states, averaged over 25 tests, with
respect to a, quantified by the similarity measure (4.29). R = 10, n = 16.

We proceed as in Section 4.1.3. Vectorising the entire system and taking the partial
derivative with respect to (X1, X(2)) € R** results in the Jacobian J € R**2K,
The entries are evaluated at the fixed points X (*1) =X (*2) = +R1,.,, resulting in

the following block Jacobian matrix, denoted Jy for convenience,

Jo — T2R ((1 ;[@K)IK ; SJOIC()IK> , (4.33)

We use the following identity for a block matrix [35],
A B| .
‘C D‘ = |A||D — CA™"B|. (4.34)

Note that the block A must be invertible, hence we assert A # F2R(1 — «), and

solve the characteristic polynomial for the eigenvalues,
|J+ — Aok | =0, (4.35)
which yields the spectrum of J., given by,
A € {F2R(1 — 2a), F2R}, «a #0. (4.36)

The value o = 0 is neglected as it is the only case where A # F2R(1 — «) is not
satisfied. Hence, for 0 < a < 1/2, the fixed point X(*l) = X(*Q) = R1,, is stable
and X(*l) = XE"Q) = —R1,, is unstable. A bifurcation occurs at a = 1/2 and

neither fixed point is stable for ao > 1/2.
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4.3.2 Stability of all balanced fixed points

We now characterise the stability of all of the balanced fixed points of the system,
showing that they are stable for a < 1/2. In such cases we show that it is not
necessary for each graph to be in the same balanced state, i.e. Xjj) can belong
to a different faction than Xj;(), provided each layer of the fixed point (X (*1), X 6“2))
is balanced.

As in section 4.1.3, we are interested in inferring the sign of the sums contained
in (4.32), which dictate the signs of the corresponding entries in the Jacobian. We
invoke our previous observation that in balanced graphs this sum equals nR? if 4
and j belong to the same faction and —nR? if they belong to different factions (i.e.
Xi;j = R or X;; = —R at the fixed point respectively). This is now a function of
the layer, [, hence we define the observation using a function ¢)(4, j) to represent

the sign of Xy so we can express the summation as

. (4.37)
—1, Xij(l) <0

> X Xejo) = nR¢w(i,5),  dwli,j) =
keV
Proceeding as before, noting that only the entries on the diagonal (p,q) = (4,7) of
each block in the Jacobian are nonzero, the diagonal entries are given by

OMij)

0Xij(1) 1Xi;=%R = —2R(1 - q), (4.38a)
g]\)?—;j((;) Xy—tR FRO:(1,7) = —2Rad (0, 1)) (0: 7), (4.38b)
g]\)?j((: xosp ~ THOT) = —2Rade (i, j)ow (0. 7). (4.38¢)
%ﬁ xyin - 2RI —a). (4.38d)

Note in (4.38b) and (4.38c) the additional ¢ accounts for the sign of the entry X;

and hence the associated F sign, allowing us to express the Jacobian as

(1 — Oé)IK aq)(l)cb(z) )
J=—2R , 4.39
(Oé(I)(l)(I)(Q) (1 - Oé)IK. ( )

In essence the matrix @y € {—1,0,1}*% encodes the sign of each vertex (4, 7) €

T along the diagonal in a given layer,
D) = diag() (i, 7)) = diag(sign(Xy)), [=1,2. (4.40)
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Again we use the identity (4.34) to calculate the characteristic polynomial for

A # —2R(1 — «). Dropping the factor of —2R, the sign matrices cancel yielding,

(1 — 0 — )\)IK qu)(l)q)(g)

V2 _ B _
a® )Py (1_a_A)[K—A 2(1—a)A+ (1 —2a) =0 (4.41)

Leading to the eigenvalues (on inclusion of the factor of —2R),
A€ {—2R(1—2a),—2R}, a#0. (4.42)

Hence for 0 < av < 1/2 if both layers constituting a fixed point are balanced, the
fixed point is stable. It is not necessary that the layers are balanced identically,
i.e. that X 1 = X (2)> S the sign difference cancels in evaluating the eigenvalues.
This result is consistent with our previous proof of the stability of the utopian
state. There is a bifurcation at v = 1/2, above which the balanced fixed points
are not stable.

In our setting, the layers of a multiplex graph may represent different planes of
social interaction between entities, for example individuals may differ in their po-
litical orientation depending on the topic of debate, or the state of affairs between
nations may differ depending on the subject, e.g. trade, migration, peace treaties,
etc. We would expect the state of one layer to be influenced by that of others, but
not more so than that of itself. Hence, we argue, the bifurcation at o = 1/2 and
the associated instabilities of balanced states above this value are not relevant to

our context, although it may prove an interesting topic for further work.

In this section, we discussed the application of bounded dynamics to multiplex
graphs. In the L = 2 case, we show that the dynamics are stable at fixed points
provided each layer is in a state of balance, and that it is not necessary for layers to
be in the same state of balance in order for the fixed point to be stable. Indeed for
low values of a, the dynamics of both layers tend towards different balanced states.
From a social perspective, this accounts for cognitive dissonance: individuals may
prescribe to different ideologies depending on the topic, or countries might choose
different sides depending on the diplomatic context. We can also increase the
coupling between layers such both do tend towards the same balanced state, our

numerical results showing that this occurs for o 2 0.3.
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Chapter 5

Conclusion

In this dissertation, we provided an overview of the socio-psychological origins
of balance in social networks and its subsequent formalism within graph theory.
We then motivated the use of models in continuous time to drive an initially
imbalanced graph to a state of balance. This involved first exploring existing
models which typically contain finite-time singularities, reflecting how once a graph
reaches a balanced state, opinions diverge. This is however unrealistic, hence we
focused on bounded models, parameterised with a saturation value R. We used
a model which includes reflexive relationships and studied the stability of the
associated fixed points and convergence to a balanced state. To our knowledge, this
marked the beginning of the novel contributions of the dissertation. We outlined
two model extensions. The first is a static control model, which serves to nudge
the system onto an orbit that reaches a desired balanced state, X*. This model
was applied to two case studies: the alliance and opposition between nations in
the years preceding WWI; and group fission in a well-known karate club study.
In both cases, the model successfully classified the members of each party in the
final state. The second extension investigated coupled dynamics between layers of
multiplex graphs. We investigated the stability of the system and the values of the
coupling parameter « for which the layers tend to identical balanced states. For
a < 1/2 we found that the layers can tend to different balanced steady states and
be stable under the associated dynamics, and we interpreted this in the context of

social networks.
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5.1 Limitations

There are several limitations to the general framework presented in this disserta-
tion. First, there are limitations to the Heider balance model and the associated
dynamics, in that it does not account for the inherent unpredictability of relations
between social individuals. We see this in the difficulty the control model has
in predicting the Russia-Hungary lapse in the WWI case study. Heider balance
theory also only accounts for ‘bipartisan fission’, applicable to settings where a
group undergoes fission into maximally two factions. This is sufficient in appli-
cations such as Zachary’s karate club study, but is not always observed in social
settings where human relations are typically stochastic and less consistent [36].
Other paradigms admit notions of weak structural balance - “Machiavellian” con-
figurations [37] in which a triad with three negative edges is considered balanced,
allowing for more than two factions to constitute a balanced graph.

In the multiplex model, if one layer is initialised with negative relations, it may
force both layers to a consensus state. An example of this is plotted in Figure A.7.
Applied to social settings, this is an artefact of the dynamics that seems unrealistic

and should be investigated in further work.

5.2 Further work

We finish by outlining a few natural progressions from the current work. For the
control model, it would be interesting to investigate the performance of this model
without a prior knowledge of the desired state. Thus a key challenge would be
how to prescribe the diplomatic target vector. Some approaches we suggested are
data mining or expert analysis, the control parameter 5 quantifying the modeller’s
trust in the source. Another avenue of exploration is optimal control, where a cost
functional may be defined for a dynamic control parameter varying in time, [3(t).
A numerical example is outlined in [29]. Another option is to data-drive the control
parameter to track the dynamics of real social interactions.

Another feasible extension would be to consider L > 2 layers in a richer multi-
plex graph topology, investigating the interplay between interlayer dynamics and

intralayer dynamics.
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It would be interesting to adopt a general stochastic model, reflecting the nature
of social interactions. A simple extension would be to include a multiplicative

stochastic variable, for example,
dX = X2dt + o X*dW,

where W is a Weiner process. This approach would be in the spirit of stochastic
variations of flocking models, e.g. the stochastic Cucker-Smale model, which is
briefly suggested as an extension to the control system in Wongkaew [29]. Such
a model could be used to investigate how robust the dynamics or control are to

noise.
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Appendix A

Reduced multiplex dynamics

To investigate the stability of the fixed points of the problem (4.31), we consider

simplified dynamics for n = 1. For 1,25 € R and R = 1, we have
i =(1—a)(1—2))2? +a(l — 23)r) (A1)
iy = (1 —a)(l —a3)as + ol —z])as.

Letting x = (21, 22)7, the associated set of nine fixed points for the system are
x* = {(0,0),(£1,0), (0,£1), (£1,£1)}.

Each of these fixed points are in the domain 2 = [—1,1] x [—1,1], the extent
determined by R = 1. The Jacobian, taken with respect to x, is given by
(=)= 22Y)xy a(l — 2xg)xy
J(x o) =2 ( a(l —2zy)zy (1—a)(1—223)xs) " (A-2)
The phase planes of the n = 1 system are simulated for a range of values of
« in Figure A.1. We refer the reader to Appendix B for numerical results of the

local stability around each fixed point.

The eigenvalues and eigenvectors of (A.2) for each of the nine fixed points are

given in Table A.1. The stability of hyperbolic fized points, which satisfy
R(A) #0, VA € Spec(J(x*; a)),

is completely determined by linearisation of the field around each fixed point [38].
The set of hyperbolic fixed points is given by H. The stability of x* € H is hence
given by the following theorem, from [39].
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. Jxa) A
(0.0) (60 0) (0.0)

10 2 (T ) (0,201 - )
(10) 2 (457 0) 0,201 - )}
0 2 (0 o) (0,201 - )}
0.-1) 2 () o) 0.2(1 - o))
(11) (M0 ) (2T~ %a,2/T—2a)
(1) (T ) (2T = 20,2yT~ %)
(1) 2 (1) {201 - 20).2)

(1,1)

—(1—a)

)

{=2,-2(1 —2a)}

Table A.1: Eigenvalues of the Jacobian evaluated at the nine fixed points of the
system (A.1). The last four rows, corresponding to the fixed points at the corners
of Q, undergo a bifurcation at o = 1/2.

95



Z1 I I

Figure A.1: Phase portrait of the system (A.3), with fixed points shown in red. A
bifurcation occurs at o = 1/2. Phase lines are initialised along the blue line, with
trajectories shown in black.

Theorem 6. For all x* € H, if, for a given a, R(\) < 0, Y\ € Spec(J(x*;a)),
then x* is asymptotically stable. Otherwise there exists a \ such that R(\) >
0, A € Spec(J(x*; ), and x* is unstable.

From Table A.1, for v < 1/2, there are four hyperbolic fixed points
H={(£1,x1)},

of which only x* = (1,1) is stable. The other three contain an unstable linear
subspace (which is tangent to a one-dimensional unstable manifold) hence, by
Theorem 6, they are unstable fixed points. At o = 1/2 a bifurcation occurs at every
fixed point in H. At the equilibria (1, 1), the eigenvalues pass through zero, a
bifurcation being implied by a change in stability of the associated linear subspaces.
A more complex bifurcation occurs at +(1, —1). If viewed in the complex plane,
the eigenvalues approach each other on the real line, collide, and become complex
conjugate. Such a bifurcation is known as a saddle-centre bifurcation [40]. For

a > 1/2 the set of hyperbolic fixed points is empty, H = &.

A.1 Classification of fixed points with singular
Jacobian

In the case of the five non-hyperbolic fixed points for o < 1/2, or seven for o > 1/2,

the Jacobian at each fixed point has at least one zero eigenvalue with an associated
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centre linear subspace, tangent to a centre manifold, W€ [38]. Both (—1,0) and
(0,—1) have an unstable subspace for a € [0,1)!, thus we can conclude in such
cases that these equilibria are unstable. In the case of one zero eigenvalue and
one negative eigenvalue, the local dynamics around z* ¢ ‘H are governed by the
reduced dynamics on the centre manifold.

For the equilibria (1,0) and (0,1) we can analyse the dynamics on the centre
manifold. This in essence involves projecting the local dynamics onto the centre
manifold, reducing the number of state variables of the system, then extending the
centre manifold by one dimension to include the bifurcation parameter v [41]. We
note that the system dynamics are symmetric about x1 = x4, thus it is sufficient to
characterise the stability of one of the above points. We leave this characterisation

to further work, if necessary.

A.1.1 Degenerate centre

In the case of the quadratic system (A.1) with degenerate linear terms, such as
(0,0), one approach is to investigate the dynamics via Normal Form analysis, in
which non-resonant terms close to a fixed point are removed by a near-identity
transformation [41]. However, a more straightforward analysis is available if we
take advantage of the symmetry of the problem. This is the approach taken below.

We may classify the local stability of the point (0,0) by noting it lies on the
line 1 = x5, which is an invariant set under the flow. Hence we may reduce the

dimension of the problem to & = f(z) € R, defined as
= f(z) =2*(1 - 2%, (A.3)

and study the dynamics around the fixed points z* = {—1,0,1}. The plot of (A.3)
is shown in Figure A.2. In the one dimensional case, the Jacobian is identical to the
derivative, D, f(z) = 2x(1 — 22?), from which we can see that D,f(—1) > 0 and
D, f(1) < 0 hence the point z* = —1 is unstable and the point z* = 1 is stable
along the invariant r; = x5, in agreement with our earlier analysis. Although
D, f(0) = 0, we can observe the behaviour of f(z) in Figure A.2 around z* = 0
to determine the stability of the fixed point. As D, f(e) > 0 for ¢ < 1, we deduce

that z* = 0 is unstable and hence, by symmetry, x* = (0,0) is unstable V «.

'We address the local stability for o = 1 in later sections.
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Figure A.2: Plot of the reduced system (A.3).

A.1.2 Saddle-centre bifurcation
For the points £(1, —1) eigenvalues of the Jacobian are given by
)\1,2 =121 — 204, a € [0, ].], (A4)

hence for a < 1/2, A; 5 are real, non-zero, and distinct. As one of them is positive,
these equilibria are unstable in this range of «, as proven earlier. Both eigenval-
ues pass through zero at o = 1/2 and become complex conjugate for o« > 1/2,
suggesting the presence of periodic behaviour, however drawing conclusions of the
stability of such is non-trivial. Numerical simulations of the global behaviour are
shown in Figure A.1, with a bifurcation at a = 1/2. Numerical solutions indicate
the presence of limit cycles for a = 1. Refer to Figure B.1 in Appendix B for a
local phase portrait around (1, —1).

Another option for identifying the stability of such points is to find a first
integral for the system, within level sets of which orbits are confined. However,
using Mathematica we found that no first integral polynomial exists in general, up
to degree 20. This is not the case when a = {0, 1} however, which we explore in

the following sections.

A.2 First integral for a =1

Representing the reduced system as
i1 = (1 —a)ri(l —2}) + azi(l — z3),

Ab
2 = (1= a)a3(1 — 23) + (L — o), (A.5)
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in the case where o = 1 we can find a first integral,

da, - f(x2)
d_l'2 B f(z1)

1.5 1.5 —
1 1 4l (
0.5 0.5 A
1M
|
X X :
il
0.5 -0.5 i
1 1
15 15 ——

Figure A.3: Numerical phase portrait of the system (A.3) with o = 1 (left) and
level sets of the function (A.7) (right).

Every orbit is contained in some level set of V'(x1,x2), defining an invariant of
the flow of (A.1). The level sets V = {0, £, £+ } contain fixed points, while all
other level sets containing points in the domain € = [—1, 1] x [—1, 1] are unions of
periodic orbits. This is shown in Figure A.4, which compares the numerical phase
lines of the system (A.1) and level sets of the function (A.7). There is no need to
appeal to, say, the Poincaré-Bendixson Theorem [38] here, as all of the information
about the orbits (not just their convergence in the limit) may be read from V.

The full system (4.31) contains linear combinations of vertices, which beget

more complex dynamics, however we can apply conclusions from the n = 1 system
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z2
=)

‘ Xa(t)
— X2(t)

0 10 20 30 40

Figure A.4: Periodic dynamics for o = 1. Plot of the level set of V' (21, z3) contain-
ing (—0.5,0.5) (left), and the associated dynamics of the full system (4.31) with
initial conditions X;(0) = —0.51,«, and X5(0) = 0.51,«, (right).

to the full system in the case of the initial conditions X;(0) = zon) L,xn and
X5(0) = To@) Lnxn. Given R = 1, the only difference is that the full system
dynamics move faster by a factor of n, but the orbits are identical, as shown in
Figure A 4.

A.3 First integral for a =0

We apply the same approach for a = 0, yielding the first integral

|zo + 1||1 — 24|
11— xo||z1 + 1]

1
V(.CEl,l'Q) = x;l _ x;l + §log < ) , I1,T2 ¢ {—1,0, 1}, (A8)

for which the level sets are plotted alongside the numerical phase portrait in Fig-
ure A.5. Note also that the lines xr; = v and 2z, = ~ are invariant sets for
v € {—1,0,1}. Orbits in the domain  which do not start on these lines tend
towards the top-right fixed point of the quadrant in which they begin.

For a = 1/2, the first integral is given by z; — 29 = ¢, for some constant c,

which can be observed from Figure A.1.
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e

Figure A.5: Numerical phase portrait of the system (A.3) with a = 0 (left). The
black phase lines are initialised just inside the domain of interest along the lines
Ly :=(-0.99,¢) and Ly := (t,—0.99) for t € [—-0.99,0.99]. The right plot shows
level sets of the function (A.8).

A.4 Regions of convergence

A necessary condition for the a = 0 orbits inside €2, shown in Figure A.5, is that
the set of fixed points in the first quadrant Q; = {(0,0), (0,1),(1,0),(1,1)} is an
asymptotic set for orbits beginning in any region S C ). This applies in general
for 0 < o < 1/2, where Figure A.6 plots each orbit associated to its w-limit point
by colour. It is worth noting from Figure A.6 that there exists a region G in the
third quadrant from which orbits will tend towards (1, 1), plotted in green. The
size of this region increases from zero with 0 < a < 1/2. We view this behaviour
as a limitation of the model when applied to multiplex social networks. The reason
is that we are associating two coupled layers of constant negative relations, and
have both graphs tend to consensus states, which does not seem realistic. It is in
fact observed for some non-constant matrices with normally distributed negative
initial conditions. If two matrices are drawn from normal distributions with means
11, po < 0, in the decoupled state, both layers tend to a bipolar state, but when

coupled they may both tend to consensus, as in Figure A.7.
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Figure A.6: Orbits beginning in the region S C 2, each associated to its w-limit
point by colour: red for (0, 1), (1,0), green for (1,1), and black for (0,0). Note
the small overshoot of the fixed point for larger values of «, indicating oscillatory
behaviour.
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a=0.25

0 20 0 20 40
t t
Figure A.7: Multiplex dynamics with initial conditions drawn from a normal distri-
bution with p; = —0.5 and p = 0 for X;(0) and X5(0) respectively. Independently,
both layers tend to bipolar states of balance (top row), but when coupled, both

tend to consensus. The small overshoot of the fixed point in the bottom right
replicates similar behaviour of the n = 1 trajectories in Figure A.6.
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Appendix B

Local stability of multiplex fixed
points for n =1

Figures B.1 and B.2 on the following pages are results of the numerical study of

the local stability of fixed points in the multiplex system (A.3).
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